
Vision HDL Toolbox™
User's Guide

R2022a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Vision HDL Toolbox™ User's Guide
© COPYRIGHT 2015–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2015 Online only New for Version 1.0 (Release R2015a)
September 2015 Online only Revised for Version 1.1 (Release R2015b)
March 2016 Online only Revised for Version 1.2 (Release R2016a)
September 2016 Online only Revised for Version 1.3 (Release R2016b)
March 2017 Online only Revised for Version 1.4 (Release R2017a)
September 2017 Online only Revised for Version 1.5 (Release R2017b)
March 2018 Online only Revised for Version 1.6 (Release 2018a)
September 2018 Online only Revised for Version 1.7 (Release 2018b)
March 2019 Online only Revised for Version 1.8 (Release 2019a)
September 2019 Online only Revised for Version 2.0 (Release 2019b)
March 2020 Online only Revised for Version 2.1 (Release 2020a)
September 2020 Online only Revised for Version 2.2 (Release 2020b)
March 2021 Online only Revised for Version 2.3 (Release 2021a)
September 2021 Online only Revised for Version 2.4 (Release 2021b)
March 2022 Online only Revised for Version 2.5 (Release 2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Streaming Pixel Interface
1

Streaming Pixel Interface . 1-2
What Is a Streaming Pixel Interface? . 1-2
How Does a Streaming Pixel Interface Work? . 1-2
Why Use a Streaming Pixel Interface? . 1-3
Pixel Stream Conversion Using Blocks and System Objects 1-4
Timing Diagram of Single Pixel Serial Interface . 1-6
Timing Diagram of Multipixel Serial Interface . 1-7

Filter Multipixel Video Streams . 1-9

MultiPixel-MultiComponent Video Streaming . 1-18

Pixel Control Bus . 1-22

Pixel Control Structure . 1-23

Convert Camera Control Signals to pixelcontrol Format 1-24

Integrate Vision HDL Blocks into Camera Link System 1-29

HDL-Optimized Algorithm Design
2

Configure Blanking Intervals . 2-2
Troubleshoot Blanking Interval Problems . 2-4

Edge Padding . 2-8

Increase Throughput with Padding None . 2-12

Gamma Correction . 2-17

Histogram Equalization . 2-22

Edge Detection and Image Overlay . 2-26

Edge Detection and Image Overlay with Impaired Frame 2-31

Noise Removal and Image Sharpening . 2-37

iii

Contents

Multi-Zone Metering . 2-41

Harris Corner Detection . 2-48

FAST Corner Detection . 2-53

Lane Detection . 2-60

Generate Cartoon Images Using Bilateral Filtering 2-77

Pothole Detection . 2-82

Buffer Bursty Data Using Pixel Stream FIFO Block 2-95

Using the Line Buffer to Create Efficient Separable Filters 2-99

Image Pyramid . 2-108

Stereo Disparity Using Semi-Global Block Matching 2-112

Stereo Image Rectification . 2-124

Image Undistortion . 2-134

Image Warp . 2-145

Low Light Enhancement . 2-155

Contrast Limited Adaptive Histogram Equalization 2-161

Image Resize . 2-172

Fog Rectification . 2-179

Blob Analysis . 2-186

Pixel-Streaming Design in MATLAB . 2-192

Enhanced Edge Detection from Noisy Color Video 2-194

Code Generation and Deployment
3

Accelerate a MATLAB Design with MATLAB Coder 3-2

HDL Code Generation from Vision HDL Toolbox . 3-3
What Is HDL Code Generation? . 3-3
HDL Code Generation Support in Vision HDL Toolbox 3-3
Streaming Pixel Interface in HDL . 3-3

iv Contents

Blocks and System Objects Supporting HDL Code Generation 3-5
Blocks . 3-5
System Objects . 3-6

Generate HDL Code from Simulink . 3-7
Introduction . 3-7
Prepare Model . 3-7
Generate HDL Code . 3-7
Generate HDL Test Bench . 3-7

Generate HDL Code from MATLAB . 3-8
Create an HDL Coder Project . 3-8
Generate HDL Code . 3-9

Modeling External Memory . 3-10
Frame Buffer . 3-11
Random Access . 3-12

Deploy and Verify YOLO v2 Vehicle Detector on FPGA 3-14

Vertical Video Flipping Using External Memory . 3-30

Rotate Image by Small Acute Angle . 3-38

Image Normalization Using External Memory . 3-47

Contrast Limited Adaptive Histogram Equalization with External Memory
. 3-59

HDL Cosimulation . 3-69

FPGA-in-the-Loop . 3-70
FPGA-in-the-Loop Simulation with Vision HDL Toolbox Blocks 3-70
FPGA-in-the-Loop Simulation with Multipixel Streaming 3-71
FPGA-in-the-Loop Simulation with Vision HDL Toolbox System Objects . . 3-73

Prototype Vision Algorithms on Zynq-Based Hardware 3-75
Video Capture . 3-75
Reference Design . 3-75
Deployment and Generated Models . 3-76

Block Reference Examples
4

Select Region of Interest . 4-2

Select Regions for Vertical Reuse . 4-6

Construct a Filter Using Line Buffer . 4-10

Convert RGB Image to YCbCr 4:2:2 Color Space 4-12

v

Compute Negative Image . 4-14

Adapt Image Filter Coefficients from Frame to Frame 4-15

Video Stabilization . 4-19

Simulation Data Inspector
5

View Data in the Simulation Data Inspector . 5-2
View Logged Data . 5-2
Import Data from the Workspace or a File . 5-3
View Complex Data . 5-5
View String Data . 5-6
View Frame-Based Data . 5-9
View Event-Based Data . 5-9

Import Data from a CSV File into the Simulation Data Inspector 5-11
Basic File Format . 5-11
Multiple Time Vectors . 5-11
Signal Metadata . 5-12
Import Data from a CSV File . 5-13

Microsoft Excel Import, Export, and Logging Format 5-16
Basic File Format . 5-16
Multiple Time Vectors . 5-16
Signal Metadata . 5-17
User-Defined Data Types . 5-19
Complex, Multidimensional, and Bus Signals . 5-21
Function-Call Signals . 5-21
Simulation Parameters . 5-22
Multiple Runs . 5-22

Configure the Simulation Data Inspector . 5-24
Logged Data Size and Location . 5-24
Archive Behavior and Run Limit . 5-25
Incoming Run Names and Location . 5-26
Signal Metadata to Display . 5-27
Signal Selection on the Inspect Pane . 5-27
How Signals Are Aligned for Comparison . 5-28
Colors Used to Display Comparison Results . 5-28
Signal Grouping . 5-29
Data to Stream from Parallel Simulations . 5-29
Options for Saving and Loading Session Files . 5-30
Signal Display Units . 5-30

How the Simulation Data Inspector Compares Data 5-32
Signal Alignment . 5-32
Synchronization . 5-33
Interpolation . 5-34
Tolerance Specification . 5-34
Limitations . 5-36

vi Contents

Save and Share Simulation Data Inspector Data and Views 5-37
Save and Load Simulation Data Inspector Sessions 5-37
Share Simulation Data Inspector Views . 5-38
Share Simulation Data Inspector Plots . 5-38
Create a Simulation Data Inspector Report . 5-39
Export Data to the Workspace or a File . 5-40
Export Video Signal to an MP4 File . 5-41

Inspect and Compare Data Programmatically . 5-43
Create a Run and View the Data . 5-43
Compare Two Signals in the Same Run . 5-44
Compare Runs with Global Tolerance . 5-45
Analyze Simulation Data Using Signal Tolerances 5-46

Limit the Size of Logged Data . 5-48
Limit the Number of Runs Retained in the Simulation Data Inspector

Archive . 5-48
Specify a Minimum Disk Space Requirement or Maximum Size for Logged

Data . 5-48
View Data Only During Simulation . 5-49
Reduce the Number of Data Points Logged from Simulation 5-49

vii

Streaming Pixel Interface

1

Streaming Pixel Interface

In this section...
“What Is a Streaming Pixel Interface?” on page 1-2
“How Does a Streaming Pixel Interface Work?” on page 1-2
“Why Use a Streaming Pixel Interface?” on page 1-3
“Pixel Stream Conversion Using Blocks and System Objects” on page 1-4
“Timing Diagram of Single Pixel Serial Interface” on page 1-6
“Timing Diagram of Multipixel Serial Interface” on page 1-7

What Is a Streaming Pixel Interface?
In hardware, processing an entire frame of video at one time has a high cost in memory and area. To
save resources, serial processing is preferable in HDL designs. Vision HDL Toolbox blocks and
System objects operate on a pixel, line, or neighborhood rather than a frame. The blocks and objects
accept and generate video data as a serial stream of pixel data and control signals. The control
signals indicate the relative location of each pixel within the image or video frame. The protocol
mimics the timing of a video system, including inactive intervals between frames. Each block or
object operates without full knowledge of the image format, and can tolerate imperfect timing of lines
and frames.

All Vision HDL Toolbox blocks and System objects support single pixel streaming (with 1 pixel per
cycle). Some blocks and System objects also support multipixel streaming (with 2, 4, or 8 pixels per
cycle) for high-rate or high-resolution video. Multipixel streaming increases hardware resources to
support higher video resolutions with the same hardware clock rate as a smaller resolution video.
HDL code generation for multipixel streaming is not supported with System objects. Use the
equivalent blocks to generate HDL code for multipixel algorithms.

How Does a Streaming Pixel Interface Work?
Video capture systems scan video signals from left to right and from top to bottom. As these systems
scan, they generate inactive intervals between lines and frames of active video.

The horizontal blanking interval is made up of the inactive cycles between the end of one line and the
beginning of the next line. This interval is often split into two parts: the front porch and the back
porch. These terms come from the synchronize pulse between lines in analog video waveforms. The
front porch is the number of samples between the end of the active line and the synchronize pulse.
The back porch is the number of samples between the synchronize pulse and the start of the active
line.

The vertical blanking interval is made up of the inactive cycles between the ending active line of one
frame and the starting active line of the next frame.

The scanning pattern requires start and end signals for both horizontal and vertical directions. The
Vision HDL Toolbox streaming pixel protocol includes the blanking intervals, and allows you to
configure the size of the active and inactive frame.

1 Streaming Pixel Interface

1-2

In the frame diagram, the blue shaded area to the left and right of the active frame indicates the
horizontal blanking interval. The orange shaded area above and below the active frame indicates the
vertical blanking interval. For more information on blanking intervals, see “Configure Blanking
Intervals” on page 2-2.

Why Use a Streaming Pixel Interface?
Format Independence

The blocks and objects using this interface do not need a configuration option for the exact image
size or the size of the inactive regions. In addition, if you change the image format for your design,
you do not need to update each block or object. Instead, update the image parameters once at the
serialization step. Some blocks and objects still require a line buffer size parameter to allocate
memory resources.

By isolating the image format details, you can develop a design using a small image for faster
simulation. Then once the design is correct, update to the actual image size.

Error Tolerance

Video can come from various sources such as cameras, tape storage, digital storage, or switching and
insertion gear. These sources can introduce timing problems. Human vision cannot detect small
variance in video signals, so the timing for a video system does not need to be perfect. Therefore,
video processing blocks must tolerate variable timing of lines and frames.

By using a streaming pixel interface with control signals, each Vision HDL Toolbox block or object
starts computation on a fresh segment of pixels at the start-of-line or start-of-frame signal. The
computation occurs whether or not the block or object receives the end signal for the previous
segment.

 Streaming Pixel Interface

1-3

The protocol tolerates minor timing errors. If the number of valid and invalid cycles between start
signals varies, the blocks or objects continue to operate correctly. Some Vision HDL Toolbox blocks
and objects require minimum horizontal blanking regions to accommodate memory buffer operations.
For more information, see “Configure Blanking Intervals” on page 2-2.

Pixel Stream Conversion Using Blocks and System Objects
In Simulink®, use the Frame To Pixels block to convert framed video data to a stream of pixels and
control signals that conform to this protocol. The control signals are grouped in a nonvirtual bus data
type called pixelcontrol. You can configure the block to return a pixel stream with 1, 2, 4, or 8
pixels per cycle.

In MATLAB®, use the visionhdl.FrameToPixels object to convert framed video data to a stream
of pixels and control signals that conform to this protocol. The control signals are grouped in a
structure data type. You can configure the object to create a pixel stream with 1, 2, 4, or 8 pixels per
cycle.

If your input video is already in a serial format, you can design your own logic to generate
pixelcontrol control signals from your existing serial control scheme. For example, see “Convert
Camera Control Signals to pixelcontrol Format” on page 1-24 and “Integrate Vision HDL Blocks into
Camera Link System” on page 1-29.

Supported Pixel Data Types

Vision HDL Toolbox blocks and objects include ports or arguments for streaming pixel data. Each
block and object supports one or more pixel formats. The supported formats vary depending on the
operation the block or object performs. This table details common video formats supported by Vision
HDL Toolbox.

Type of Video Pixel Format
Binary Each pixel is represented by a single boolean or logical value. Used for true

black-and-white video.
Grayscale Each pixel is represented by luma, which is the gamma-corrected luminance

value. This pixel is a single unsigned integer or fixed-point value.
Color Each pixel is represented by 2 to 4 unsigned integer or fixed-point values

representing the color components of the pixel. Vision HDL Toolbox blocks and
objects use gamma-corrected color spaces, such as R'G'B' and Y'CbCr.

To process multicomponent streams for blocks that do not support
multicomponent input, replicate the block for each component. The
pixelcontrol bus for all components is identical, so you can connect a single
bus to multiple replicated blocks.

To set up multipixel streaming for color video, you can configure the Frame To
Pixels block to return a multicomponent and multipixel stream. See “MultiPixel-
MultiComponent Video Streaming” on page 1-18.

Vision HDL Toolbox blocks have an input or output port, pixel, for the pixel data. Vision HDL
Toolbox System objects expect or return an argument representing the pixel data. The following table
describes the format of the pixel data.

1 Streaming Pixel Interface

1-4

Port or Argument Description Data Type
pixel • Single pixel streaming — A scalar that represents

a binary or grayscale pixel value or a row vector
of two to four values representing a color pixel

• Multipixel streaming — Column vector of two,
four, or eight pixel values

• Multipixel-multicomponent streaming — Matrix
of two, four, or eight pixel values by two to four
color components.

You can simulate System objects with a multipixel
streaming interface, but System objects that use
multipixel streams are not supported for HDL code
generation. Use the equivalent blocks to generate
HDL code for multipixel algorithms.

Supported data types can include:

• boolean or logical
• uint or int
• fixdt()

double and single data types are
supported for simulation, but not
for HDL code generation.

Note The blocks in this table support multipixel input, but not multicomponent pixels. The table
shows what number of input pixels each block supports.

Block Number of pixels
Image Filter 2, 4, or 8
Bilateral Filter 2, 4, or 8
Line Buffer 2, 4, or 8
Edge Detector 4 or 8
Median Filter 4 or 8
Histogram 4 or 8
Lookup Table 4 or 8
Binary morphology: Closing, Dilation, Erosion,
and Opening

4 or 8

These blocks support multipixel-multicomponent pixel streams. The table shows what number of
pixels and components each block supports.

Block Number of pixels Number of components
Pixel Stream FIFO 2, 4, or 8 1, 3, or 4
Color Space Converter 2, 4, or 8 3
Demosaic Interpolator 2, 4 or 8 3 (output only)
ROI Selector 4 or 8 1, 3, or 4
Pixel Stream Aligner 4 or 8 1, 3, or 4

 Streaming Pixel Interface

1-5

Streaming Pixel Control Signals

Vision HDL Toolbox blocks and objects include ports or arguments for control signals relating to each
pixel. These five control signals indicate the validity of a pixel and its location in the frame. For
multipixel streaming, each vector of pixel values has one set of control signals.

In Simulink, the control signal port is a nonvirtual bus data type called pixelcontrol. For details of
the bus data type, see “Pixel Control Bus” on page 1-22.

In MATLAB, the control signal argument is a structure. For details of the structure data type, see
“Pixel Control Structure” on page 1-23.

Timing Diagram of Single Pixel Serial Interface
To illustrate the streaming pixel protocol, this example converts a frame to a sequence of control and
data signals. Consider a 2-by-3 pixel image. To model the blanking intervals, configure the serialized
image to include inactive pixels in these areas around the active image:

• 1-pixel-wide back porch
• 2-pixel-wide front porch
• 1 line before the first active line
• 1 line after the last active line

You can configure the dimensions of the active and inactive regions with the Frame To Pixels block or
the visionhdl.FrameToPixels object.

In the figure, the active image area is in the dashed rectangle, and the inactive pixels surround it. The
pixels are labeled with their grayscale values.

The block or object serializes the image from left to right, one line at a time. The timing diagram
shows the control signals and pixel data that correspond to this image, which is the serial output of
the Frame To Pixels block for this frame, configured for single-pixel streaming.

1 Streaming Pixel Interface

1-6

For an example using the Frame to Pixels block to serialize an image, see “Design Video Processing
Algorithms for HDL in Simulink”.

For an example using the FrameToPixels object to serialize an image, see “Design a Hardware-
Targeted Image Filter in MATLAB”.

Timing Diagram of Multipixel Serial Interface
This example converts a frame to a multipixel stream with 4 pixels per cycle and corresponding
control signals. Consider a 64-pixel-wide frame with these inactive areas around the active image.

• 4-pixel-wide back porch
• 4-pixel-wide front porch
• 4 lines before the first active line
• 4 lines after the last active line

The Frame to Pixels block configured for multipixel streaming returns pixel vectors formed from the
pixels of each line in the frame from left to right. This diagram shows the top-left corner of the frame.
The gray pixels show the active area of the frame, and the zero-value pixels represent blanking pixels.
The label on each active pixel represents the location of the pixel in the frame. The highlighted boxes
show the sets of pixels streamed on one cycle. The pixels in the inactive region are also streamed four
at a time. The gray box shows the four blanking pixels streamed the cycle before the start of the
active frame. The blue box shows the four pixel values streamed on the first valid cycle of the frame,
and the orange box shows the four pixel values streamed on the second valid cycle of the frame. The
green box shows the first four pixels of the next active line.

This waveform shows the multipixel streaming data and control signals for the first line of the same
frame, streamed with 4 pixels per cycle. The pixelcontrol signals that apply to each set of four
pixel values are shown below the data signals. Because the vector has only one valid signal, the
pixels in the vector are either all valid or all invalid. The hStart and vStart signals apply to the
pixel with the lowest index in the vector. The hEnd and vEnd signals apply to the pixel with the
highest index in the vector.

Prior to the time period shown, the initial vertical blanking pixels are streamed four at a time, with all
control signals set to false. This waveform shows the pixel stream of the first line of the image. The
gray, blue, and orange boxes correspond to the highlighted areas of the frame diagram. After the first
line is complete, the stream has two cycles of horizontal blanking that contains 8 invalid pixels (front
and back porch). Then, the waveform shows the next line in the stream, starting with the green box.

 Streaming Pixel Interface

1-7

For an example model that uses multipixel streaming, see “Filter Multipixel Video Streams” on page
1-9.

See Also
Frame To Pixels | Pixels To Frame | visionhdl.FrameToPixels | visionhdl.PixelsToFrame

Related Examples
• “Design Video Processing Algorithms for HDL in Simulink”
• “Design a Hardware-Targeted Image Filter in MATLAB”
• “Filter Multipixel Video Streams” on page 1-9
• “MultiPixel-MultiComponent Video Streaming” on page 1-18

1 Streaming Pixel Interface

1-8

Filter Multipixel Video Streams
This example shows how to design filters that operate on a multipixel input video stream. Use
multipixel streaming to process high-resolution or high-frame-rate video with the same synthesized
clock frequency as a single-pixel streaming interface. Multipixel streaming also improves simulation
speed and throughput because fewer iterations are required to process each frame, while
maintaining the hardware benefits of a streaming interface.

The example model has three subsystems which each perform the same algorithm:

• SinglePixelGaussianEdge: Uses the Image Filter and Edge Detector blocks to operate on a
single-pixel stream. This subsystem shows how the rates and interfaces for single-pixel streaming
compare with multipixel designs.

• MultiPixelGaussianEdge: Uses the Image Filter and Edge Detector blocks to operate on a
multipixel stream. This subsystem shows how to use the multipixel interface with library blocks.

• MultiPixelCustomGaussianEdge: Uses the Line Buffer block to build a Gaussian filter and Sobel
edge detection for a multipixel stream. This subsystem shows how to use the Line Buffer output
for multipixel design.

Processing multipixel video streams allows for higher frame rates to be achieved without a
corresponding increase to the clock frequency. Each of the subsystems can achieve 200MHz clock
frequency on a Xilinx ZC706 board. The 480p video stream has Total pixels per line x Total video
lines = 800*525 cycles per frame. With a single pixel stream you can process 200M/(800*525) = 475
frames per second. In the multipixel subsystem, 4 pixels are processed on each cycle, which reduces
the number of cycles per line to 200. This means that with a multipixel stream operating on 4 pixels
at a time, at 200MHz, on a 480p stream, 1900 frames can be processed per second. If the resolution
is increased from 480p to 1080p, 80 frames per second can be achieved in the single pixel case
versus 323 frames per second for 4 pixels at a time or 646 frames per second for 8 pixels at a time.

Multipixel Streaming Using Library Blocks

Generate a multipixel stream from the Frame to Pixels block by setting Number of pixels to 4 or 8.
The default value of 1 returns a scalar pixel stream with a sample rate of Total pixels per line *

 Filter Multipixel Video Streams

1-9

Total video lines faster than the frame rate. This rate shows red in the example model. The two
multipixel subsystems use a multipixel stream with Number of pixels set to 4. This configuration
returns 4 pixels on each clock cycle and has a sample rate of (Total pixels per line/4) * Total video
lines. The lower output rate, which is green in the model, shows that you can increase either the
input frame rate or resolution by a factor of 4 and therefore process 4 times as many pixels in the
same frame period using the same clock frequency as the single pixel case.

The SinglePixelGaussianEdge and MultiPixelGaussianEdge subsystems compute the same result
using the Image Filter and Edge Detector blocks.

In MultiPixelGaussianEdge, the blocks accept and return four pixels on each clock cycle. You do
not have to configure the blocks for multipixel streaming, they detect the input size on the port. The
pixelcontrol bus indicates the validity and location in the frame of each set of four pixels. The
blocks buffer the [4x1] stream to form four [KernelHeight x KernelWidth] kernels, and compute four
convolutions in parallel to give a [4x1] output.

Custom Multipixel Algorithms

The MultiPixelCustomGaussianEdge subsystem uses the Line Buffer block to implement a custom
filtering algorithm. This subsystem is similar to how the library blocks internally implement multipixel
kernel operations. The Image Filter and Edge Detector blocks use more detailed optimizations than
are shown here. This implementation shows a starting point for building custom multipixel algorithms
using the output of the Line Buffer block.

The custom filter and custom edge detector use the Line Buffer block to return successive
[KernelHeight x NumberofPixels] regions. Each region is passed to the KernelIndexer subsystem
which uses buffering and indexing logic to form Number of Pixels * [KernelHeight x KernelWidth]
filter kernels. Then each kernel is passed to a separate FilterKernel subsystem to perform
convolutions in parallel.

1 Streaming Pixel Interface

1-10

Form Kernels from Line Buffer Output

The KernelIndexer subsystem forms 4 [5x5] filter kernels from the 2-D output of the Line Buffer
block.

 Filter Multipixel Video Streams

1-11

The diagram shows how the filter kernel is extracted from the [5x4] output stream, for the kernel that
is centered on the first pixel in the [4x1] output. This first kernel includes pixels from 2 adjacent [5x4]
Line Buffer outputs.

1 Streaming Pixel Interface

1-12

The kernel centered on the last pixel in the [4x1] output also includes the third adjacent [5x4] output.
So, to form four [5x5] kernels, the subsystem must access columns from three [5x4] matrices.

The KernelIndexer subsystem uses the current [5x4] input, and stores two more [5x4] matrices using
registers enabled by shiftEnable. This design is similar to the tapped delay line used with a Line
Buffer using single pixel streaming. The subsystem then accesses pixel data across the columns to
form the four [5x5] kernels. The Image Filter block uses this same logic internally when the block has
multipixel input. The block automatically designs this logic at compile time for any supported kernel
size.

Implement Filters

Since the input multipixel stream is a [4x1] vector, the filters must perform four convolutions on each
cycle to keep pace with the incoming data. There are four parallel FilterKernel subsystems that each

 Filter Multipixel Video Streams

1-13

perform the same operation. The [5x5] matrix multiply is implemented as a [5x1] vector multiply by
using a For Each subsystem containing a pipelined multiplier. The output is passed to an adder tree.
The adder tree is also pipelined, and the pipeline latency is applied to the pixelcontrol signal to
match. The results of the four FilterKernel subsystems are then concatenated into a [4x1] output
vector.

Implement Edge Detectors

To match the algorithm of the Edge Detector block, this custom edge detector uses a [3x3] kernel
size. Compare this KernelIndexer subsystem for the [3x3] edge detection with the [5x5] kernel
described above. The algorithm still must access three successive matrices from the output of the
Line Buffer block (including padding on either side of the kernel). However, the algorithm saves fewer
columns to form a smaller filter kernel.

1 Streaming Pixel Interface

1-14

 Filter Multipixel Video Streams

1-15

Extending to Larger Kernel Sizes

For a [4x1] multipixel stream, the KernelIndexer logic will look similar up to [11x11] kernel size. At
that size, the number of padding pixels, (floor(11/2)) = 5, will overlap on two [11x4] matrices
returned from the Line Buffer. This overlap means the algorithm would need to store five [5x4]
matrices from the Line Buffer to form four [11x11] kernels on each cycle.

Improving Simulation Time

In the default example configuration, the single pixel, multipixel, and custom multipixel subsystems
all run in parallel. The simulation speed is limited by the time processing the single-pixel path
because it requires more iterations to process the same size of frame. To observe the simulation
speed improvement for multipixel streaming, comment out the single-pixel data path.

1 Streaming Pixel Interface

1-16

HDL Implementation Results

HDL was generated from both the MultiPixelGaussianEdge subsystem and the
MultiPixelCustomGaussianEdge subsystem and put through Place and Route on a Xilinx™ ZC706
board. The MultiPixelCustomGaussianEdge subsystem, which does not attempt to optimize
coefficients, had the following results -

T =

 4x2 table

 Resource Usage
 _________ _____

 DSP48 108
 Flip Flop 9842
 LUT 4960
 BRAM 12

The MultiPixelGaussianEdge subsystem, which uses the optimized Image Filter and Edge Detector
blocks uses less resources, as shown in the table below. This comparison shows the resource savings
achieved because the blocks analyze the filter structure and pre-add repeated coefficients.

T =

 4x2 table

 Resource Usage
 _________ _____

 DSP48 16
 Flip Flop 3959
 LUT 1789
 BRAM 10

See Also
Frame To Pixels | Image Filter | Edge Detector | Pixels To Frame

More About
• “Streaming Pixel Interface” on page 1-2

 Filter Multipixel Video Streams

1-17

MultiPixel-MultiComponent Video Streaming
This example shows how to work with a multipixel-multicomponent pixel stream. Multipixel-
multicomponent streaming enables real-time processing of high-resolution or high-frame-rate color
video streams.

To demonstrate working with such a video stream, this example implements the well-known bloom
effect image post-processing technique. The bloom effect introduces or enhances the glow of light
sources in an image.

Top Level I/0

Each pixel of a high-resolution or high-frame-rate pixel stream is modeled as a NumPixel-by-
NumComponent matrix. Matrix data types are supported for HDL code generation within a design,
but not for the ports of the top-level subsystem. In this case, the input pixel stream is split into three
4-by-1 vectors at the input of the DUT, and then recombined at the output into a 4-by-3 matrix for the
Pixels To Frame block.

Bloom Effect

The example model follows these three steps to add a bloom effect to the input image.

1 The BrightSpotFilter subsystems find bright spots in the intensity image by checking pixel values
against a threshold. These pixel values have been converted from RGB to intensity by the Color
Space Converter.

2 The 15x15 Blur subsystem spreads out the bright spots by applying a Gaussian filter.
3 The BlendBloom subsystem adds the Gaussian-enhanced bright spots back to the original image.

1 Streaming Pixel Interface

1-18

Matrix Operations

Vision HDL Toolbox™ neighborhood-processing blocks can operate on vector inputs, but do not
support matrix inputs. The line buffer used inside the blocks returns a NumPixels-by-KernelHeight
matrix. Using multicomponent inputs would result in a NumPixels-by-KernelHeight-by-
NumComponents output matrix, however, 3-D matrices are not supported for HDL code generation.
To work around this the model uses For Each subsystems which support HDL code generation with
scalar, vector, and matrix inputs.

The model sets the Partition Width and Partition Dimension of the BrightSpotFilter to 1. The
subsystem applies a threshold in parallel to each 1x3 RGB multi-component pixel of its input
multipixel-multicomponent matrix.

The 15x15 Blur subsystem has the Partition Width set to 1 and Partition Dimension set to 2. The
subsystem applies a Gaussian filter in parallel to each 4x1 multipixel RGB component.

The BlendBloom subsystem has the Partition Width and Partition Dimension set to 1. The
subsystem adds in parallel each 1x3 multicomponent pixel to its respective filtered 1x3
multicomponent pixel.

Simulation Results

Simulating the model displays these input and output images. The bloom effect makes the lighted
areas of the scene look brighter and shows a halo effect.

 MultiPixel-MultiComponent Video Streaming

1-19

Implementation Results

This table shows the synthesis results of HDL code generated from the DUT subsystem and
synthesized for a Xilinx™ Zynq™ ZC706 board. Because none of the resources exceed 25% of their
respective category, the design has a relatively small footprint.

T =

 4x2 table

 Resource Usage
 _________ _____

 DSP48 84
 Flip Flop 61739
 LUT 36966
 BRAM 132

See Also
Frame To Pixels | Pixels To Frame

1 Streaming Pixel Interface

1-20

More About
• “Streaming Pixel Interface” on page 1-2

 MultiPixel-MultiComponent Video Streaming

1-21

Pixel Control Bus
Vision HDL Toolbox blocks use a nonvirtual bus data type, pixelcontrol, for control signals
associated with serial pixel data. The bus contains 5 boolean signals indicating the validity of a pixel
and its location within a frame. You can easily connect the data and control output of one block to the
input of another, because Vision HDL Toolbox blocks use this bus for input and output. To convert an
image into a pixel stream and a pixelcontrol bus, use the Frame to Pixels block.

Signal Description Data Type
hStart true for the first pixel in a horizontal line of a frame boolean
hEnd true for the last pixel in a horizontal line of a frame boolean
vStart true for the first pixel in the first (top) line of a

frame
boolean

vEnd true for the last pixel in the last (bottom) line of a
frame

boolean

valid true for any valid pixel boolean

For multipixel streaming, each vector of pixel values has one set of control signals. Because the
vector has only one valid signal, the pixels in the vector must be either all valid or all invalid. The
hStart and vStart signals apply to the pixel with the lowest index in the vector. The hEnd and
vEnd signals apply to the pixel with the highest index in the vector.

Troubleshooting: When you generate HDL code from a Simulink model that uses this bus, you may
need to declare an instance of pixelcontrol bus in the base workspace. If you encounter the error
Cannot resolve variable 'pixelcontrol' when you generate HDL code in Simulink, use the
pixelcontrolbus function to create an instance of the bus type. Then try generating HDL code
again.

To avoid this issue, the Vision HDL Toolbox model template includes this line in the InitFcn
callback.

evalin('base','pixelcontrolbus')

See Also
Frame To Pixels | Pixels To Frame | pixelcontrolbus

More About
• “Streaming Pixel Interface” on page 1-2

1 Streaming Pixel Interface

1-22

Pixel Control Structure
Vision HDL Toolbox System objects use a structure data type for control signals associated with serial
pixel data. The structure contains five logical signals indicating the validity of a pixel and its
location within a frame. You can easily pass the data and control output arguments of one Vision HDL
Toolbox System object™ as the input arguments to another Vision HDL Toolbox System object,
because the objects use this structure for input and output control signal arguments. To convert an
image into a pixel stream and control signals, use the visionhdl.FrameToPixels System object.

Signal Description Data Type
hStart true for the first pixel in a horizontal line of a frame logical
hEnd true for the last pixel in a horizontal line of a frame logical
vStart true for the first pixel in the first (top) line of a

frame
logical

vEnd true for the last pixel in the last (bottom) line of a
frame

logical

valid true for any valid pixel logical

See Also
pixelcontrolstruct | pixelcontrolsignals | visionhdl.FrameToPixels |
visionhdl.PixelsToFrame

More About
• “Streaming Pixel Interface” on page 1-2

 Pixel Control Structure

1-23

Convert Camera Control Signals to pixelcontrol Format
This example shows how to convert Camera Link® signals to the pixelcontrol structure, invert the
pixels with a Vision HDL Toolbox™ object, and convert the control signals back to the Camera Link
format.

Vision HDL Toolbox blocks and objects use a custom streaming video format. If your system operates
on streaming video data from a camera, you must convert the camera control signals into this custom
format. Alternatively, if you integrate Vision HDL Toolbox algorithms into existing design and
verification code that operates in the camera format, you must also convert the output signals from
the Vision HDL Toolbox design back to the camera format.

You can generate HDL code from the three functions in this example. To create local copies of all the
files in this example, so you can view and edit them, click the Open Script button.

Create Input Data in Camera Link Format

The Camera Link format consists of three control signals: F indicates the valid frame, L indicates
each valid line, and D indicates each valid pixel. For this example, create input vectors in the Camera
Link format to represent a basic padded video frame. The vectors describe this 2-by-3, 8-bit grayscale
frame. In the figure, the active image area is in the dashed rectangle, and the inactive pixels
surround it. The pixels are labeled with their grayscale values.

F = logical([0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]);
L = logical([0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0]);
D = logical([0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0]);
pixel = uint8([0,0,0,0,0,0,0,30,60,90,0,0,0,120,150,180,0,0,0,0,0,0,0,0]);

Design Vision HDL Toolbox Algorithm

Create a function to invert the image using Vision HDL Toolbox algorithms. The function contains a
System object that supports HDL code generation. This function expects and returns a pixel and
associated control signals in Vision HDL Toolbox format.

function [pixOut,ctrlOut] = InvertImage(pixIn,ctrlIn)

 persistent invertI;
 if isempty(invertI)
 tabledata = linspace(255,0,256);
 invertI = visionhdl.LookupTable(uint8(tabledata));

1 Streaming Pixel Interface

1-24

 end

 % *Note:* This syntax runs only in R2016b or later. If you are using an
 % earlier release, replace each call of an object with the equivalent |step|
 % syntax. For example, replace |myObject(x)| with |step(myObject,x)|.
 [pixOut,ctrlOut] = invertI(pixIn,ctrlIn);
end

Convert Camera Link Control Signals to pixelcontrol Format

Write a custom System object to convert Camera Link signals to the Vision HDL Toolbox control
signal format. The object converts the control signals, and then calls the pixelcontrolstruct
function to create the structure expected by the Vision HDL Toolbox System objects. This code
snippet shows the logic to convert the signals.

 ctrl = pixelcontrolstruct(obj.hStartOutReg,obj.hEndOutReg,...
 obj.vStartOutReg,obj.vEndOutReg,obj.validOutReg);

 vStart = obj.FReg && ~obj.FPrevReg;
 vEnd = ~F && obj.FReg;
 hStart = obj.LReg && ~obj.LPrevReg;
 hEnd = ~L && obj.LReg;

 obj.vStartOutReg = vStart;
 obj.vEndOutReg = vEnd;
 obj.hStartOutReg = hStart;
 obj.hEndOutReg = hEnd;
 obj.validOutReg = obj.DReg;

The object stores the input and output control signal values in registers. vStart goes high for one
cycle at the start of F. vEnd goes high for one cycle at the end of F. hStart and hEnd are derived
similarly from L. The object returns the current value of ctrl each time you call it.

This processing adds two cycles of delay to the control signals. The object passes through the pixel
value after matching delay cycles. For the complete code for the System object, see
CAMERALINKtoVHT_Adapter.m.

Convert pixelcontrol to Camera Link

Write a custom System object to convert Vision HDL Toolbox signals back to the Camera Link format.
The object calls the pixelcontrolsignals function to flatten the control structure into its
component signals. Then it computes the equivalent Camera Link signals. This code snippet shows
the logic to convert the signals.

 [hStart,hEnd,vStart,vEnd,valid] = pixelcontrolsignals(ctrl);

 Fnew = (~obj.FOutReg && vStart) || (obj.FPrevReg && ~obj.vEndReg);
 Lnew = (~obj.LOutReg && hStart) || (obj.LPrevReg && ~obj.hEndReg);

 obj.FOutReg = Fnew;
 obj.LOutReg = Lnew;
 obj.DOutReg = valid;

The object stores the input and output control signal values in registers. F is high from vStart to
vEnd. L is high from hStart to hEnd. The object returns the current values of FOutReg, LOutReg,
and DOutReg each time you call it.

 Convert Camera Control Signals to pixelcontrol Format

1-25

This processing adds one cycle of delay to the control signals. The object passes through the pixel
value after a matching delay cycle. For the complete code for the System object, see
VHTtoCAMERALINKAdapter.m.

Create Conversion Functions That Support HDL Code Generation

Wrap the converter System objects in functions, similar to InvertImage, so you can generate HDL
code for these algorithms.

function [ctrl,pixelOut] = CameraLinkToVisionHDL(F,L,D,pixel)
% CameraLink2VisionHDL : converts one cycle of CameraLink control signals
% to Vision HDL format, using a custom System object.
% Introduces two cycles of delay to both ctrl signals and pixel data.

persistent CL2VHT;
 if isempty(CL2VHT)
 CL2VHT = CAMERALINKtoVHT_Adapter();
 end

 [ctrl,pixelOut] = CL2VHT(F,L,D,pixel);

See CameraLinkToVisionHDL.m, and VisionHDLToCameraLink.m.

Write a Test Bench

To invert a Camera Link pixel stream using these components, write a test bench script that:

1 Preallocates output vectors to reduce simulation time
2 Converts the Camera Link control signals for each pixel to the Vision HDL Toolbox format
3 Calls the Invert function to flip each pixel value
4 Converts the control signals for that pixel back to the Camera Link format

[~,numPixelsPerFrame] = size(pixel);
pixOut = zeros(numPixelsPerFrame,1,'uint8');
pixel_d = zeros(numPixelsPerFrame,1,'uint8');
pixOut_d = zeros(numPixelsPerFrame,1,'uint8');
DOut = false(numPixelsPerFrame,1);
FOut = false(numPixelsPerFrame,1);
LOut = false(numPixelsPerFrame,1);
ctrl = repmat(pixelcontrolstruct,numPixelsPerFrame,1);
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

for p = 1:numPixelsPerFrame
 [pixel_d(p),ctrl(p)] = CameraLinkToVisionHDL(pixel(p),F(p),L(p),D(p));
 [pixOut(p),ctrlOut(p)] = Invert(pixel_d(p),ctrl(p));
 [pixOut_d(p),FOut(p),LOut(p),DOut(p)] = VisionHDLToCameraLink(pixOut(p),ctrlOut(p));
end

View Results

The resulting vectors represent this inverted 2-by-3, 8-bit grayscale frame. In the figure, the active
image area is in the dashed rectangle, and the inactive pixels surround it. The pixels are labeled with
their grayscale values.

1 Streaming Pixel Interface

1-26

If you have a DSP System Toolbox™ license, you can view the vectors as signals over time using the
Logic Analyzer. This waveform shows the pixelcontrol and Camera Link control signals, the
starting pixel values, and the delayed pixel values after each operation.

 Convert Camera Control Signals to pixelcontrol Format

1-27

See Also
pixelcontrolstruct | pixelcontrolsignals

More About
• “Streaming Pixel Interface” on page 1-2

1 Streaming Pixel Interface

1-28

Integrate Vision HDL Blocks into Camera Link System
This example shows how to design a Vision HDL Toolbox™ algorithm for integration into an existing
system that uses the Camera Link® signal protocol.

Vision HDL Toolbox blocks use a custom streaming video format. If you integrate Vision HDL Toolbox
algorithms into existing design and verification code that operates in a different streaming video
format, you must convert the control signals at the boundaries. The example uses custom System
objects to convert the control signals between the Camera Link format and the Vision HDL Toolbox
pixelcontrol format. The model imports the System objects to Simulink® by using the MATLAB®
System block.

Structure of the Model

This model imports pixel data and control signals in the Camera Link format from the MATLAB
workspace. The CameraLink_InvertImage subsystem is designed for integration into existing
systems that use Camera Link protocol. The CameraLink_InvertImage subsystem converts the
control signals from the Camera Link format to the pixelcontrol format, modifies the pixel data
using the Lookup Table block, and then converts the control signals back to the Camera Link format.
The model exports the resulting data and control signals to workspace variables.

Structure of the Subsystem

The CameraLink2VHT and VHT2CameraLink blocks are MATLAB System blocks that point to custom
System objects. The objects convert between Camera Link signals and the pixelcontrol format
used by Vision HDL Toolbox blocks and objects.

You can put any combination of Vision HDL Toolbox blocks into the middle of the subsystem. This
example uses an inversion Lookup Table.

You can generate HDL from this subsystem.

 Integrate Vision HDL Blocks into Camera Link System

1-29

Import Data in Camera Link Format

Camera Link consists of three control signals: F indicates the valid frame, L indicates each valid line,
and D indicates each valid pixel. For this example, the input data and control signals are defined in
the InitFcn callback. The vectors describe this 2-by-3, 8-bit grayscale frame. In the figure, the
active image area is in the dashed rectangle, and the inactive pixels surround it. The pixels are
labeled with their grayscale values.

 FIn = logical([0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]);
 LIn = logical([0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0]);
 DIn = logical([0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0]);
 pixIn = uint8([0,0,0,0,0,0,0,30,60,90,0,0,0,120,150,180,0,0,0,0,0,0,0,0]);

Convert Camera Link Control Signals to pixelcontrol Format

Write a custom System object to convert Camera Link signals to the Vision HDL Toolbox format. This
example uses the object designed in the “Convert Camera Control Signals to pixelcontrol Format” on
page 1-24 example.

The object converts the control signals, and then creates a structure that contains the new control
signals. When the object is included in a MATLAB System block, the block translates this structure
into the bus format expected by Vision HDL Toolbox blocks. For the complete code for the System
object, see CAMERALINKtoVHT_Adapter.m.

Create a MATLAB System block and point it to the System object.

1 Streaming Pixel Interface

1-30

Design Vision HDL Toolbox Algorithm

Select Vision HDL Toolbox blocks to process the video stream. These blocks accept and return a
scalar pixel value and a pixelcontrol bus that contains the associated control signals. This
standard interface makes it easy to connect blocks from the Vision HDL Toolbox libraries together.

This example uses the Lookup Table block to invert each pixel in the test image. Set the table data to
the reverse of the uint8 grayscale color space.

Convert pixelcontrol to Camera Link

Write a custom System object to convert Vision HDL Toolbox signals back to the Camera Link format.
This example uses the object designed in the “Convert Camera Control Signals to pixelcontrol
Format” on page 1-24 example.

The object accepts a structure of control signals. When you include the object in a MATLAB System
block, the block translates the input pixelcontrol bus into this structure. Then it computes the
equivalent Camera Link signals. For the complete code for the System object, see
VHTtoCAMERALINKAdapter.m.

Create a second MATLAB System block and point it to the System object.

 Integrate Vision HDL Blocks into Camera Link System

1-31

View Results

Run the simulation. The resulting vectors represent this inverted 2-by-3, 8-bit grayscale frame. In the
figure, the active image area is in the dashed rectangle, and the inactive pixels surround it. The pixels
are labeled with their grayscale values.

If you have a DSP System Toolbox™ license, you can view the signals over time using the Logic
Analyzer. Select all the signals in the CameraLink_InvertImage subsystem for streaming, and open
the Logic Analyzer. This waveform shows the input and output Camera Link control signals and pixel
values at the top, and the input and output of the Lookup Table block in pixelcontrol format at the
bottom. The pixelcontrol busses are expanded to observe the boolean control signals.

1 Streaming Pixel Interface

1-32

For more info on observing waveforms in Simulink, see “Inspect and Measure Transitions Using the
Logic Analyzer” (DSP System Toolbox).

Generate HDL Code for Subsystem

To generate HDL code you must have an HDL Coder™ license.

To generate the HDL code, use the following command.

 makehdl('CameraLinkAdapterEx/CameraLink_InvertImage')

You can now simulate and synthesize these HDL files along with your existing Camera Link system.

See Also

More About
• “Streaming Pixel Interface” on page 1-2

 Integrate Vision HDL Blocks into Camera Link System

1-33

HDL-Optimized Algorithm Design

2

Configure Blanking Intervals
Streaming video protocols have two blanking intervals: horizontal and vertical. The horizontal
blanking interval is the period of inactive cycles between the end of one line and the beginning of the
next line. The vertical blanking interval is the period of inactive lines between the end of a frame and
the beginning of the next frame.

In this frame diagram, the blue shaded areas to the left and right of the active frame indicate the
horizontal blanking interval. The orange shaded areas above and below the active frame indicate the
vertical blanking interval.

In the Frame To Pixels block, the horizontal blanking interval is equal to Total pixels per line –
Active pixels per line or, equivalently, Front porch + Back porch. The vertical blanking interval is
equal to Total video lines – Active video lines or, equivalently, Starting active line + Ending
active line – Active video lines.

For example, the Frame To Pixels block whose parameters are shown in this image has a horizontal
blanking interval of 140 pixels and a vertical blanking interval of 80 lines.

2 HDL-Optimized Algorithm Design

2-2

A streaming video format must have a long enough blanking interval so that the operation on the
previous line or frame completes before the next line or frame starts. An inadequate horizontal or
vertical blanking interval results in corrupted output frames. Standard streaming video formats use a
horizontal blanking interval of about 25% of the line width. This interval is much larger than the
delay of a typical operation. However, when you use a custom video format, you must include
blanking intervals that accommodate the length of the operations in your design.

In these waveform diagrams, the top signal shows the state of the pixel stream for two lines of a
frame. The shaded area represents the horizontal blanking interval between lines. The bottom signal
shows the state of the block performing an operation on the pixel stream. The busy state indicates
when the block is processing a line, and the idle state indicates when the block is available to start
working on a new line. The first pair of signals shows a scenario where the block finishes working on
the first active line before the second line begins. This blanking interval is long enough to ensure
correct output frames, because the block is available to start work on the second line when it arrives.
The second pair of signals shows a scenario where the block is still working on the first active line
when the second line begins. The output of the block is corrupted in the second case, because the
block misses the beginning of the second line.

 Configure Blanking Intervals

2-3

The time an operation takes to complete after the end of the line is often dependent on the kernel size
of the operation. For instance, algorithms that use line buffers and apply padding pixels to the edge of
the frame require at least Kw cycles between lines, where Kw is the width of the kernel. An algorithm
might also have pipeline delays from the kernel operation after the buffer. These delays can be
related or unrelated to the kernel size, and can be greater or smaller than the line buffer delays. The
processing time of each operation depends on the line buffer pipelining and on the kernel operation
pipelining. The blanking interval must be long enough to accommodate the longer of these two
delays. When you use multiple blocks in a processing chain, the blanking interval must accommodate
the block with the longest delay.

The recommended minimum horizontal blanking interval is 2×Kw when using padding or 12 cycles
when you set the Padding method parameter to None. This interval includes some margin for longer
kernel processing times on top of the line buffer delay.

The recommended vertical blanking interval is at least the height of the kernel, Kh lines. The line
buffer requires this interval whether or not the operation uses padding.

Note When you use a pixel streaming block inside an Enabled Subsystem, the enable signal pattern
must maintain the timing of the pixel stream, including the minimum blanking intervals. You may
need to extend the blanking intervals to accommodate for cycles when the enable is low.

Troubleshoot Blanking Interval Problems
When the blanking interval is too small, you might see:

• Blank output frames
• Partial output frames
• Corrupted pixel stream control signal patterns (for instance, missing vEnd or hEnd signals, or

duplicate End or Start signals)
• That the algorithm works with continuous valid input pixels on each line, but not when gaps exist

between valid pixels in a line
• That the algorithm works in Simulink but fails in HDL simulation

Vision HDL Toolbox library blocks model hardware pipeline stages as a latency applied at the output.
In the corresponding HDL implementations, the pipeline stages are distributed across the calculation.
This difference means that for a given cycle, a block can be in a busy state in HDL simulation but
appear idle in Simulink. When the blanking period is too short, this difference can cause the
generated HDL test bench to show mismatches between Simulink and HDL signals, especially on the
output control signals.

2 HDL-Optimized Algorithm Design

2-4

If you see any of these symptoms, increase your horizontal and vertical blanking intervals to 25% of
the active frame dimensions and rerun the simulation. If this step confirms that a too-small blanking
interval is causing your symptoms, you can fine tune the intervals.

One way to diagnose blanking interval problems in Simulink is to use the Measure Timing block to
observe the dimensions of the pixel stream before and after your operation. Inadequate blanking
intervals cause the block to corrupt the control signals. In these cases, the output frames show
different dimensions than the input frames.

This model shows an Image Filter block configured with a 12-by-12 filter kernel and edge padding
enabled. The pixel stream format is a custom format that has only 8 horizontal blanking pixels, as
shown by the Measure Timing block on the input stream. Because the horizontal blanking interval is
smaller than the kernel width, the output frame is blank. The Measure Timing block on the output of
the filter shows corruption of the format.

You can also see the corruption by looking at the output control signals in the Logic Analyzer app.
The waveform shows the input and output signals of the Image Filter block. The red arrows indicate
missing hStart signals and a different pattern on the output valid signal from the block.

This model shows an Edge Detector block configured to use the 3-by-3 Sobel filter kernel and with
edge padding enabled. This pixel stream format has only two horizontal blanking pixels, as shown by

 Configure Blanking Intervals

2-5

the Measure Timing block on the input stream. In this case, the output frame includes only every
second line. The Measure Timing block on the output of the filter shows the corruption of the format.

You can also see the corruption by looking at the output control signals in the Logic Analyzer app.
The waveform shows the input and output signals of the Edge Detector block. The red circle indicates
missing hStart and hEnd signals, and the red arrow indicates a different pattern on the output
valid signal from the block.

If you modify the input format to have a horizontal blanking interval of 3 pixels, this model returns
the correct output frames in Simulink. However, when you run the generated HDL test bench, the
test bench reports mismatches between the signals captured in Simulink and the signal behavior in
HDL. This image of the test bench log highlights the mismatch in the output hEnd and vEnd signals.

2 HDL-Optimized Algorithm Design

2-6

This waveform from the simulation of the HDL test bench shows that the hEnd and vEnd signals at
the end of the first frame are missing. The blue signals are the expected output as captured from the
Simulink simulation. The red signals are the output of the algorithm in the HDL simulation. The red
arrows indicate where the expected control signal pulses are missing.

To fix the Image Filter model and the Edge Detector model, set the horizontal blanking interval to at
least 2×Kw pixels, where Kw is the width of the filter kernel. For the Image Filter model, set this
value to at least 24 pixels. For the Edge Detector model, set this value to at least 8 pixels.

See Also
Frame To Pixels | Measure Timing

More About
• “Streaming Pixel Interface” on page 1-2

 Configure Blanking Intervals

2-7

Edge Padding
To perform a kernel-based operation such as filtering on a pixel at the edge of a frame, Vision HDL
Toolbox algorithms pad the edges of the frame with extra pixels. These padding pixels are used for
internal calculation only. The output frame has the same dimensions as the input frame. The padding
operation assigns a pattern of pixel values to the inactive pixels around a frame. Vision HDL Toolbox
algorithms provide padding by constant value, replication, or symmetry.

Some blocks and System objects also support opting out of setting the padding pixel values. This
option reduces the hardware resources used by the block and the blanking required between frames
but affects the accuracy of the output pixels at the edges of the frame.

The diagrams show the top-left corner of a frame, with padding added to accommodate a 5-by-5 filter
kernel. When computing the filtered value for the top-left active pixel, the algorithm requires two
rows and two columns of padding. The edge of the active image is indicated by the double line.

Type of Padding Description Diagram
Constant Each added pixel is assigned the same value.

On some blocks and System objects you can
specify the constant value. The value 0,
representing black, is a reserved value in
some video standards. Choosing a small
number, such as 16, as a near-black padding
value, is common.

In the diagram, C is the constant
value assigned to the inactive
pixels around the active frame.

2 HDL-Optimized Algorithm Design

2-8

Type of Padding Description Diagram
Replicate The pixel values at the edge of the active

frame are repeated to make rows and
columns of padding pixels.

The diagram shows the pattern
of replicated values assigned to
the inactive pixels around the
active frame.

Symmetric The padding pixels are added such that they
mirror the edge of the image.

The diagram shows the pattern
of symmetric values assigned to
the inactive pixels around the
active frame. The pixel values
are symmetric about the edge of
the image in both dimensions.

 Edge Padding

2-9

Type of Padding Description Diagram
Reflection The padding pixels are added such that they

reflect around the pixel at the edge of the
image. This type of padding is useful for
machine learning applications because it
removes edge contrast and maintains texture.

The diagram shows the pattern
of reflected values assigned to
the inactive pixels around the
active frame. The pixel values
are reflected around the first
pixel of the image in both
dimensions.

None This option excludes padding logic. The line
buffer does not set the pixels outside the
image frame to any particular value. The
kernel calculation uses the current value in
the line buffer. To maintain pixel stream
timing, the output frame is the same size as
the input frame. However, to avoid using
pixels calculated from undefined padding
values, mask off the KernelSize/2 pixels
around the edge of the frame for downstream
operations.

Excluding padding can useful for applications
that meet any of these conditions.

• The output video stream does not need to
maintain physical timing.

• The resulting image is not displayed. For
example, finding the location of objects in
an image.

• The information of interest is always in
the center of the image.

For an example, see “Increase Throughput
with Padding None” on page 2-12.

The diagram shows the
undefined values of the inactive
pixels around the active frame.

2 HDL-Optimized Algorithm Design

2-10

Padding requires minimum horizontal and vertical blanking periods. This interval gives the algorithm
time to add and store the extra pixels. The blanking period, or inactive pixel region, must be at least
KernelWidth pixels horizontally and KernelHeight lines vertically.

When you set the Padding method to None, the horizontal blanking period must have at least 6
pixels of front porch and 6 pixels of back porch. For the Median Filter block with the Padding
method set to None, the horizontal blanking must have at least 10 pixels of front porch and 10 pixels
of back porch. The vertical blanking still must be KernelHeight lines. For more detail on blanking
intervals, see “Configure Blanking Intervals” on page 2-2.

See Also
Image Filter | visionhdl.ImageFilter

More About
• “Streaming Pixel Interface” on page 1-2

 Edge Padding

2-11

Increase Throughput with Padding None
This example shows how to reduce latency and save hardware resources by not adding padding pixels
at the edge of each frame.

Most image filtering operations pad the image to fill in the neighborhoods for pixels at the edge of the
image. Padding can help avoid border artifacts in the output image. In a hardware implementation,
the padding operation uses extra resources and introduces extra latency.

Vision HDL Toolbox™ blocks that perform neighborhood processing with padding require horizontal
blanking that is twice the kernel width. This behavior means that larger filter sizes result in a longer
blanking requirement. Excluding the padding by setting the Padding method parameter to None
enables you to use a smaller period of horizontal blanking. Without padding, the horizontal blanking
requirement is independent of the image resolution and kernel size.

This example includes two models. The first model shows how to use this option with library blocks,
and the second model demonstrates using it when constructing algorithms that use the Line Buffer
block. This example also explains some design considerations when you do not use padding.

Use of Library Blocks with Padding None

This example model shows how to use padding none with a predefined algorithm from Vision HDL
Toolbox libraries. This model includes an Image Filter block configured for an n-by-n blur filter and
with its Padding method parameter set to None. You can change the size of the filter kernel by
changing the value of n in the workspace. The model opens with n set to 15.

When using edge padding, most blocks have floor(KernelHeight/2) lines of latency and require
2*KernelWidth cycles of horizontal blanking. When you omit padding, most blocks require only 12
cycles of horizontal blanking. Because the internal line buffer latency no longer depends on the
kernel size, this blanking interval accommodates any kernel size.

To show the reduced blanking requirements of using Padding method set to None, the Frame To
Pixels block is configured for a custom 240p format that uses only 12 cycles of combined front and
back porch.

When you run the model, it shows these three figures.

• Input Video -- Original 240p input video.
• Padding None Full Frame -- Output video from the filter without padding, showing border

artifacts.
• Padding None ROI -- Output video from the filter without padding, with border pixels trimmed

from the edges of the frame. The frame size is smaller than the size of the input video.

2 HDL-Optimized Algorithm Design

2-12

Border Artifacts

In the Padding None Full Frame viewer, shown, a dark border is visible around the edge of each
frame. This effect is because, without padding pixels, the filter neighborhoods are not fully defined at
the edges of the frame. Output from a filter that has padding pixels does not show any border
artifacts because the padding logic ensures that the edge neighborhoods are fully defined.

Removing or masking off these border pixels from nonpadded output before further analysis is
common. Border artifacts can decrease the accuracy of subsequent processing. For example, these
artifacts can affect the statistical distribution of the overall image. Vision HDL Toolbox blocks return
the border pixels for nonpadded images to maintain the input and output timing. The values of these
pixels are undefined and cannot be assumed to have any particular relation to the surrounding pixels.

The ROI Selector block removes floor(KernelHeight/2) and floor(KernelWidth/2) pixels
from the edges of each frame. The Padding None ROI viewer, shown, shows the video with the border
artifacts removed. The resulting frame for a 15-by-15 kernel is 225-by-305 pixels in size, reduced
from 240-by-320 pixels.

 Increase Throughput with Padding None

2-13

Use of Line Buffer Block with Padding None

This model shows how to design algorithms by using a Line Buffer with the Padding method
parameter set to None. This model contains a Padding None subsystem, and a Padding Symmetric
subsystem.

The Frame To Pixels block connected to the Padding Symmetric subsystem uses the standard 240p
format. The standard horizontal blanking (combined front and back porch) is 82 cycles. Increasing
the resolution increases the blanking interval. For example, the 1080p format has 280 idle cycles
between lines.

The Frame To Pixels block connected to the Padding None subsystem implements a custom 240p
format that uses only 12 cycles of combined front and back porch, the same as in the Image Filter
model shown earlier.

This model implements a 15-by-15 Gaussian filter, with a large standard deviation, by using the Line
Buffer block.

When you run the model, it shows three figures:

• Input Video -- Original 240p input video.
• Padding None ROI -- Output video from the filter without padding, with border pixels trimmed

from the edges of the frame. The frame size is smaller than the size of the input video.
• Padding Symmetric -- Output video from the filter with symmetric padding. This video is full size

but has no edge effects because the padding bits define the neighborhoods around the edge pixels.

2 HDL-Optimized Algorithm Design

2-14

pixelcontrol Delay Balancing

When you construct algorithms that use the Line Buffer block, you must delay-balance the
pixelcontrol bus to account for the kernel latency. When you use padding, the Line Buffer returns
shiftEnable set to 1 for floor(KernelWidth/2) cycles before hStart and after hEnd. The delay-
balancing logic uses this extended shiftEnable signal to control the delay registers for the
pixelcontrol signals. You can see this logic in the Padding Symmetric/pixelctrldelay subsystem.

When you set Padding method to None, the Line Buffer returns shiftEnable to 1 between hStart
and hEnd. The delay-balancing logic must use the clock, instead of shiftEnable, to control the delay
registers for hEnd, vEnd, and valid. The valid signal must also respond to shiftEnable being set to
0 during a line, which can occur when interfacing with external memory. The valid signal must also
be set to 1 on the last pixel of the line, to match with hEnd and vEnd. To meet both requirements,
the delay-balancing logic delays the valid signal by using a register enabled by shiftEnable, and
uses a Unit Delay Enabled block to set the valid signal to 1 with hEnd at the end of the line. The
Padding None/pixelctrldelay subsystem shows this logic.

 Increase Throughput with Padding None

2-15

Conclusion

Excluding padding logic enables you to achieve higher throughput by using a video format with
reduced horizontal blanking. This option also reduces hardware resource usage. However, your
design must account for the border artifacts later in the processing chain. When you use the Line
Buffer block, you must delay the pixelcontrol bus to match the kernel latency by using control
logic that accounts for the modified behavior of the shiftEnable output signal. Using this example as
a starting point, you can design algorithms and systems that achieve higher throughput by excluding
padding logic.

2 HDL-Optimized Algorithm Design

2-16

Gamma Correction
This example shows how to model pixel-streaming gamma correction for hardware designs. The
model compares the results from the Vision HDL Toolbox™ Gamma Corrector block with the results
generated by the full-frame Gamma block from Computer Vision Toolbox™.

This example model provides a hardware-compatible algorithm. You can implement this algorithm on
a board using a Xilinx™ Zynq™ reference design. See “Gamma Correction with Zynq-Based
Hardware” (Vision HDL Toolbox Support Package for Xilinx Zynq-Based Hardware).

Structure of the Example

The Computer Vision Toolbox product models at a high level of abstraction. The blocks and objects
perform full-frame processing, operating on one image frame at a time. However, FPGA or ASIC
systems perform pixel-stream processing, operating on one image pixel at a time. This example
simulates full-frame and pixel-streaming algorithms in the same model.

The GammaCorrectionHDL.slx system is shown below.

The difference in the color of the lines feeding the Full-Frame Gamma Compensation and Pixel-
Stream Gamma Compensation subsystems indicates the change in the image rate on the
streaming branch of the model. This rate transition is because the pixel stream is sent out in the same
amount of time as the full video frames and therefore it is transmitted at a higher rate.

In this example, the Gamma correction is used to correct dark images. Darker images are generated
by feeding the Video Source to the Corruption block. The Video Source outputs a 240p grayscale
video, and the Corruption block applies a De-gamma operation to make the source video
perceptually darker. Then, the downstream Full-Frame Gamma Compensation block or Pixel-

 Gamma Correction

2-17

Stream Gamma Compensation subsystem removes the previous De-gamma operation from the
corrupted video to recover the source video.

One frame of the source video, its corrupted version, and recovered version, are shown from left to
right in the diagram below.

It is a good practice to develop a behavioral system using blocks that process full image frames, the
Full-Frame Gamma Compensation block in this example, before moving forward to working on an
FPGA-targeting design. Such a behavioral model helps verify the video processing design. Later on, it
can serve as a reference for verifying the implementation of the algorithm targeted to an FPGA.
Specifically, the lower PSNR (peak signal-to-noise ratio) block in the Result Verification section at
the top level of the model compares the results from full-frame processing with those from pixel-
stream processing.

Frame To Pixels: Generating a Pixel Stream

The task of the Frame To Pixels is to convert a full-frame image to pixel stream. To simulate the
effect of horizontal and vertical blanking periods found in real life hardware video systems, the active
image is augmented with non-image data. For more information on the streaming pixel protocol, see
“Streaming Pixel Interface” on page 1-2. The Frame To Pixels block is configured as shown:

2 HDL-Optimized Algorithm Design

2-18

The Number of components field is set to 1 for grayscale image input, and the Video format field
is 240p to match that of the video source.

In this example, the Active Video region corresponds to the 240x320 matrix of the dark image from
the upstream Corruption block. Six other parameters, namely, Total pixels per line, Total video

 Gamma Correction

2-19

lines, Starting active line, Ending active line, Front porch, and Back porch specify how many
non-image data will be augmented on the four sides of the Active Video. For more information, see
the Frame To Pixels block reference page.

Note that the sample time of the Video Source is determined by the product of Total pixels per line
and Total video lines.

Gamma Correction

As shown in the diagram below, the Pixel-Stream Gamma Compensation subsystem contains only
a Gamma Corrector block.

The Gamma Corrector block accepts the pixel stream, as well as a bus containing five
synchronization signals, from the Frame To Pixels block. It passes the same set of signals to the
downstream Pixels To Frame block. Such signal bundle and maintenance are necessary for pixel-
stream processing.

Pixels To Frame: Converting Pixel Stream Back to Full Frame

As a companion to Frame To Pixels that converts a full image frame to pixel stream, the Pixels To
Frame block, reversely, converts the pixel stream back to the full frame by making use of the
synchronization signals. Since the output of the Pixels To Frame block is a 2-D matrix of a full
image, there is no need to further carry on the bus containing five synchronization signals.

The Number of components field and the Video format fields of both Frame To Pixels and Pixels
To Frame are set at 1 and 240p, respectively, to match the format of the video source.

Image Viewer and Result Verification

When you run the simulation, three images will be displayed (refer to the images shown in the
"Structure of the Example" Section):

• The source image given by the Image Source subsystem
• The dark image produced by the Corruption block
• The HDL output generated by the Pixel-Stream gamma Compensation subsystem

The presence of the four Unit Delay blocks on top level of the model is to time-align the 2-D matrices
for a fair comparison.

While building the streaming portion of the design, the PSNR block continuously verifies the
HDLOut results against the original full-frame design BehavioralOut. During the course of the
simulation, this PSNR block should give inf output, indicating that the output image from the Full-
Frame Gamma Compensation matches the image generated from the stream processing Pixel-
Stream Gamma Compensation model.

2 HDL-Optimized Algorithm Design

2-20

Exploring the Example

The example allows you to experiment with different Gamma values to examine their effect on the
Gamma and De-gamma operation. Specifically, a workspace variable with an initial
value 2.2 is created upon opening the model. You can modify its value using the MATLAB command
line as follows:

gammaValue=4

The updated will be propagated to the Gamma field of the Corruption block, the
Full-Frame Gamma Compensation block, and the Gamma Corrector block inside Pixel-Stream
Gamma Compensation subsystem. Closing the model clears from your workspace.

Although Gamma operation is conceptually the inverse of De-gamma, feeding an image to Gamma
followed by a De-gamma (or De-gamma first then Gamma) does not necessarily perfectly restore the
original image. Distortions are expected. To measure this, in our example, another PSNR block is
placed between the SourceImage and BehavioralOut. The higher the PSNR, the less distortion has
been introduced. Ideally, if HDL output and the source image are identical, PSNR outputs inf. In our
example, this happens only when equals 1 (i.e., both Gamma and De-gamma blocks
pass the source image through).

We can also use Gamma to corrupt a source image by making it brighter, followed by a De-gamma
correction for image recovery.

Generate HDL Code and Verify Its Behavior

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command:

makehdl('GammaCorrectionHDL/Pixel-Stream Gamma Compensation')

To infer a RAM to implement a lookup table used in the Gamma Corrector, the
LUTRegisterResetType property is set to none. To access this property, right click the Gamma
Corrector block inside Pixel-Stream Gamma Compensation, and navigate to HDL Coder -> HDL
Block Properties ...

To generate test bench, use the following command:

makehdltb('GammaCorrectionHDL/Pixel-Stream Gamma Compensation')

 Gamma Correction

2-21

Histogram Equalization
This example shows how to use the Vision HDL Toolbox™ Histogram library block to implement
histogram equalization.

This example model provides a hardware-compatible algorithm. You can generate HDL code from this
algorithm, and implement it on a board using a Xilinx™ Zynq™ reference design. See “Histogram
Equalization with Zynq-Based Hardware” (Vision HDL Toolbox Support Package for Xilinx Zynq-Based
Hardware).

Introduction

The model shows how to use the Histogram library block to enhance the contrast of images by
applying the histogram equalization. To learn more, refer to the Histogram block reference page.
There are three components in this histogram equalization example.

• Video Partition partitions a big image into four non-overlapping small images for parallel
histogram computation.

• HDLHistogram computes the accumulated histogram of the image.
• Equalization applies the equalized histogram to the original image and generates the contrast-

enhanced image.

Video Partition

There are use cases where histogram is computed over an entire image, or over small regions-of-
interest representing sections of the image. Computing histogram of a big image is time consuming.
The video partition component in this example divides a big image into four non-overlapping small
images. Histogram is computed over the four small images simultaneously. Each input frame is

2 HDL-Optimized Algorithm Design

2-22

partitioned into four 120 by 160 small images. Each small image is connected to a Frame To Pixels
block to generate pixel streams and corresponding control signals.

HDLHistogram

HDLHistogram subsystem is optimized for HDL code generation. The histogram of the pixel streams
is computed using the Histogram block. Because the input image is grey scale with data type uint8,
the input pixels are grouped into 256 bins. The model reads the calculated histogram bins
sequentially once the block asserts the readRdy signal. The bin values are sent for cumulative
histogram calculation. After all 256 bin values are read, the model asserts binReset to reset all bins to
zero. The collected histogram of each small image is then added together to compute the
accumulated histogram of the big image.

 Histogram Equalization

2-23

The timing diagram of reading and resetting the histogram bins is shown in the following figure.

Equalization

Histogram equalization can be applied to the current frame where the accumulated histogram was
calculated, or the frame after. If applying to the current frame, the input video needs to be stored.
This example delays the input video by one frame and performs uniform equalization to the original
video. The equalized video is then compared with the original video.

2 HDL-Optimized Algorithm Design

2-24

HDL Code Generation

The HDL code generated from the Histogram was synthesized using Xilinx ISE on a Virtex6
(XC6VLX240T-1FFG1156) FPGA, and the circuit ran at about 190 MHz, which is sufficient to process
the data in real time.

To check and generate HDL code of this example, you must have an HDL Coder™ license.

You can use the commands

makehdl('HistogramEqualizationHDL/HDLHistogram')

or

makehdltb('HistogramEqualizationHDL/HDLHistogram')

to generate HDL code and test bench for the HDLHistogram subsystem. Note: Test bench generation
takes a long time due to the large data size. Consider reducing the simulation time before generating
the test bench.

 Histogram Equalization

2-25

Edge Detection and Image Overlay
This example shows how to detect and highlight object edges in a video stream. The behavior of the
pixel-stream Sobel Edge Detector block, video stream alignment, and overlay, is verified by
comparing the results with the same algorithm calculated by the full-frame blocks from the Computer
Vision Toolbox™.

This example model provides a hardware-compatible algorithm. You can implement this algorithm on
a board using a Xilinx® Zynq® reference design. See “Developing Vision Algorithms for Zynq-Based
Hardware” (Vision HDL Toolbox Support Package for Xilinx Zynq-Based Hardware).

Structure of the Example

The EdgeDetectionAndOverlayHDL.slx system is shown below.

The difference in the color of the lines feeding the Full-Frame Behavioral Model and Pixel-Stream
HDL Model subsystems indicates the change in the image rate on the streaming branch of the
model. This rate transition is because the pixel stream is sent out in the same amount of time as the
full video frames and therefore it is transmitted at a higher rate.

Full-Frame Behavioral Model

The following diagram shows the structure of the Full-Frame Behavioral Model subsystem, which
employs the frame-based Edge Detection block.

2 HDL-Optimized Algorithm Design

2-26

Given that the frame-based Edge Detection block does not introduce latency, image overlay is
performed by weighting the source image and the Edge Detection output image, and adding them
together in a straightforward manner.

One frame of the source video, the edge detection result, and the overlaid image are shown from left
to right in the diagram below.

It is a good practice to develop a behavioral system using blocks that process full image frames, the
Full-Frame Behavioral Model subsystem in this example, before moving forward to working on an
FPGA-targeting design. Such a behavioral model helps verify the video processing design. Later on, it
can serve as a reference for verifying the implementation of the algorithm targeted to an FPGA.
Specifically, the PSNR (peak signal-to-noise ratio) block at the top level of the model compares the
results from full-frame processing with those from pixel-stream processing.

Frame To Pixels: Generating a Pixel Stream

The task of the Frame To Pixels is to convert a full frame image to pixel stream. To simulate the
effect of horizontal and vertical blanking periods found in real life hardware video systems, the active
image is augmented with non-image data. For more information on the streaming pixel protocol, see
“Streaming Pixel Interface” on page 1-2. The Frame To Pixels block is configured as shown:

 Edge Detection and Image Overlay

2-27

The Number of components field is set to 1 for grayscale image input, and the Video format field
is 240p to match that of the video source.

In this example, the Active Video region corresponds to the 240x320 matrix of the dark image from
the upstream Corruption block. Six other parameters, namely, Total pixels per line, Total video

2 HDL-Optimized Algorithm Design

2-28

lines, Starting active line, Ending active line, Front porch, and Back porch specify how many
non-image data will be augmented on the four sides of the Active Video. For more information, see
the Frame To Pixels block reference page.

Note that the sample time of the Video Source is determined by the product of Total pixels per line
and Total video lines.

Pixel-Stream Edge Detection and Image Overlay

The Pixel-Stream HDL Model subsystem is shown in the diagram below. You can generate HDL
code from this subsystem.

Due to the nature of pixel-stream processing, unlike the Edge Detection block in the Full-Frame
Behavioral Model, the Edge Detector block from the Vision HDL Toolbox™ will introduce latency.
The latency prevents us from directly weighting and adding two images to obtain the overlaid image.
To address this issue, the Pixel Stream Aligner block is used to synchronize the two pixel streams
before the sum.

To properly use this block, refPixel and refCtrl must be connected to the pixel and control bus that
are associated with a delayed pixel stream. In our example, due to the latency introduced by the
Edge Detector, the pixel stream coming out of the Edge Detector is delayed with respect to that
feeding into it. Therefore, the upstream source of refPixel and refCtrl are the Edge and ctrl output of
the Edge Detector.

Pixels To Frame: Converting Pixel Stream Back to Full Frame

As a companion to Frame To Pixels that converts a full image frame to pixel stream, the Pixels To
Frame block, reversely, converts the pixel stream back to the full frame by making use of the
synchronization signals. Since the output of the Pixels To Frame block is a 2-D matrix of a full
image, there is no need to further carry on the bus containing five synchronization signals.

The Number of components field and the Video format fields of both Frame To Pixels and Pixels
To Frame are set at 1 and 240p, respectively, to match the format of the video source.

Verifying the Pixel Stream Processing Design

While building the streaming portion of the design, the PSNR block continuously verifies results
against the original full-frame design. The Delay block on the top level of the model time-aligns the 2-
D matrices for a fair comparison. During the course of the simulation, the PSNR block should give
inf output, indicating that the output image from the Full-Frame Behavioral Model matches the
image generated from the stream processing Pixel-Stream HDL Model.

 Edge Detection and Image Overlay

2-29

Exploring the Example

The example allows you to experiment with different threshold and alpha values to examine their
effect on the quality of the overlaid images. Specifically, two workspace variables
and with initial values 7 and 0.8, respectively, are created upon opening the model. You can
modify their values using the MATLAB® command line as follows:

thresholdValue=8
alpha=0.5

The updated will be propagated to the Threshold field of the Edge Detection block
inside the Full-Frame Behavioral Model and the Edge Detector block inside Pixel-Stream HDL
Model/Edge Detection. The value will be propagated to the Gain1 block in the Full-Frame
Behavioral Model and Pixel-Stream HDL Model/Image Overlay, and the value of goes
to Gain2 blocks. Closing the model clears both variables from your workspace.

In this example, the valid range of is between 0 and 256, inclusive. Setting
 equal to or greater than 257 triggers a message Parameter overflow occurred for

'threshold'. The higher you set the , the smaller the amount of edges the example
finds in the video.

The valid range of is between 0 and 1, inclusive. It determines the weights for edge detection
output image and the original source image before adding them. The overlay operation is a linear
interpolation according to the following formula.

 overlaid image = alpha*source image + (1-alpha)*edge image.

Therefore, when , the overlaid image is the edge detection output, and when it
becomes the source image.

Generate HDL Code and Verify Its Behavior

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command:

makehdl('EdgeDetectionAndOverlayHDL/Pixel-Stream HDL Model');

To generate a test bench, use the following command:

makehdltb('EdgeDetectionAndOverlayHDL/Pixel-Stream HDL Model');

2 HDL-Optimized Algorithm Design

2-30

Edge Detection and Image Overlay with Impaired Frame
This example shows how to introduce impairments in order to test a design with imperfect video
input.

When designing video processing algorithms, an important concern is the quality of the incoming
video stream. Real-life video systems, like surveillance cameras or camcorders, produce imperfect
signals. The stream can contain errors such as active lines of unequal length, glitches, or incomplete
frames. In simulation, a streaming video source will usually produce perfect signals. When you use
the Frame To Pixels block from the Vision HDL Toolbox™, all lines are of equal size, and all frames
are complete. A video algorithm that simulates well under these conditions does not guarantee its
effectiveness on an FPGA that connects to a real-world video source. To assess the robustness of a
video algorithm under nonideal real-world video signals, it is practical to introduce impairments in
the pixel stream.

This example extends the “Edge Detection and Image Overlay” on page 2-26 example by manually
masking off the leading control signals of a frame to resemble a scenario where the algorithm starts
in the middle of a frame. Such test scenarios are necessary to prove robustness of streaming video
designs.

It is beneficial to go over the “Edge Detection and Image Overlay” on page 2-26 example before
proceeding to this example.

Structure of the Example

The structure of this example is shown below, which closely follows the structure of the pixel-stream
processing unit of the model in “Edge Detection and Image Overlay” on page 2-26.

The Edge Detection subsystem implements a Sobel algorithm to highlight the edge of an image. The
Align Video subsystem is used to synchronize the delayed output of the EdgeDetector with the
original frame. Image Overlay weights and sums up the two time-aligned images.

This material is organized as follows. We first develop an Align Video subsystem that works well with
perfect video signals. Then, we use the Frame Impairment subsystem to mask off the leading
control signals of a frame to resemble a scenario where the algorithm starts in the middle of a frame.
We will see that such impairment makes Align Video ineffective. Finally, a revised version of Align
Video is developed to address the issue.

Align Video is implemented as a variant subsystem. You can use the variable VERSION in workspace
to select which one of the two versions you want to simulate.

 Edge Detection and Image Overlay with Impaired Frame

2-31

Note: Starting in R2017a the Pixel Stream Aligner block replaces the Align Video subsystem shown
here. This new block makes setting the line buffer size and number of lines much easier and
generates HDL code. In new designs, use the Pixel Stream Aligner block rather than the Align Video
subsystem. For an example of how to use the block, see “Edge Detection and Image Overlay” on page
2-26.

First Version of Align Video

The following diagram shows the structure of the first version of the Align Video subsystem.

Align Video uses control signals to detect the active region of a frame. For more information on the
streaming pixel protocol, see “Streaming Pixel Interface” on page 1-2.

The basic idea of aligning two pixel streams is to buffer valid pixels that come earlier into a FIFO
based only on valid signals, and appropriately pop individual pixel from this FIFO based on the valid
signal of the delayed pixel-stream.

Test Align Video Using Frame Impairment Subsystem

To illustrate how the Frame Impairment subsystem works, consider a 2-by-3 pixel frame. In the
figure below, this frame is showed in the dashed rectangle with inactive pixels surrounding it.
Inactive pixels include a 1-pixel-wide back porch, a 2-pixel-wide front porch, 1 line before the first
active line, and 1 line after the last active line. Both active and inactive pixels are labeled with their
grayscale values.

2 HDL-Optimized Algorithm Design

2-32

If the Frame To Pixels block accepts this 2-by-3 frame as an input and its settings correspond to the
porch lengths shown above, then the timing diagram of the Frame To Pixels output is illustrated in
the upper half of the following diagram.

The Frame Impairment subsystem skips a configurable number of valid pixels at the beginning of
the simulation. For example, if it was configured to skip 4 pixels of the example frame, the result
would be as in the lower half of the timing diagram. We can see that by skipping 4 valid pixels, the
three valid pixels on the second line (i.e., with intensity values of 30, 60, and 90), and the first valid
pixel on the third line, are masked off, along with their associated control signals. Moreover, the
Frame Impairment subsystem introduces two clock cycle delays. If we enter 0 pixels to skip, it just
delays both pixel and ctrl outputs from Frame To Pixels by two clock cycles.

Double-click the Frame Impairment subsystem and ensure 'Number of valid pixels to skip' is set to
0. As mentioned before, this setting does not impair the frame, all it does is to delay both pixel and
ctrl outputs from Frame To Pixels by two clock cycles. The output from the video output is shown
below, which is expected.

 Edge Detection and Image Overlay with Impaired Frame

2-33

Now, double-click Frame Impairment again and enter any positive integer number, say 100, in the
'Number of valid pixels to skip' field.

Rerun the model and the resulting video output is shown below.

2 HDL-Optimized Algorithm Design

2-34

We can see that the edge output is at the right place but the original image is shifted. This output
clearly suggests that our first version of Align Video is not robust against a pixel stream that starts
in the middle of a frame.

Two reasons explain this behavior. Firstly, EdgeDetector block starts processing only after seeing a
valid frame start, indicated by hStart, vStart, and valid going high at the same clock cycle. The block
does not output anything for a partial frame. Secondly, the FIFO, inside the Align Video subsystem,
starts buffering the frame once the valid signal is true, whether it is a partial frame or a complete
frame. Therefore, at the start of the second frame, FIFO has been contaminated with the pixels of the
previous partial frame.

Corrected Version of Align Video

Based on the insight gained from the previous section, a revised version of Align Video is shown
below.

 Edge Detection and Image Overlay with Impaired Frame

2-35

The goal is to only push the pixels of complete frames into the FIFO. If the leading frames are not
complete, their valid pixels are ignored.

To achieve this, an enabled register called lock is used (highlighted in the diagram above). Its initial
value is logical 0. ANDing this 0 with a delayed version of valid always gives logical 0. This prevents
any valid pixels from being pushed into FIFO. The lock toggles its output from logical 0 to 1 only
when hStart, vStart, and valid signals assert high, an indicator of the start of a new frame. After lock
toggles to 1, the 'push' input of FIFO now follows a delayed version of the valid signal. So the valid
pixels of a new frame will be buffered in FIFO.

To test this revised implementation, type the following command at MATLAB prompt.

 VERSION=2;

Rerun the simulation. Now the edge output and the original image are perfectly aligned.

2 HDL-Optimized Algorithm Design

2-36

Noise Removal and Image Sharpening
This example shows how to implement a front-end module of an image processing design. This front-
end module removes noise and sharpens the image to provide a better initial condition for the
subsequent processing.

An object out of focus results in a blurred image. Dead or stuck pixels on the camera or video sensor,
or thermal noise from hardware components, contribute to the noise in the image. In this example,
the front-end module is implemented using two pixel-stream filter blocks from the Vision HDL
Toolbox™. The median filter removes the noise and the image filter sharpens the image. The example
compares the pixel-stream results with those generated by the full-frame blocks from the Computer
Vision System Toolbox™.

This example model provides a hardware-compatible algorithm. You can implement this algorithm on
a board using a Xilinx™ Zynq™ reference design. See “Image Sharpening with Zynq-Based
Hardware” (Vision HDL Toolbox Support Package for Xilinx Zynq-Based Hardware).

Structure of the Example

Computer Vision Toolbox blocks operate on an entire frame at a time. Vision HDL Toolbox blocks
operate on a stream of pixel data, one pixel at a time. The conversion blocks in Vision HDL Toolbox,
Frame To Pixels and Pixels To Frame, enable you to simulate streaming-pixel designs alongside full-
frame designs.

The NoiseRemovalAndImageSharpeningHDL.slx system is shown below.

The following diagram shows the structure of the Full-Frame Behavioral Model subsystem, which
consists of the frame-based Median Filter and 2-D FIR Filter. As mentioned before, median filter
removes the noise and 2-D FIR Filter is configured to sharpen the image.

 Noise Removal and Image Sharpening

2-37

The Pixel-Stream HDL Model subsystem contains the streaming implementation of the median filter
and 2-D FIR filter, as shown in the diagram below. You can generate HDL code from the Pixel-Stream
HDL Model subsystem.

The Verification subsystem compares the results from full-frame processing with those from pixel-
stream processing.

One frame of the blurred and noisy source video, its de-noised version after median filtering, and the
sharpened output after 2-D FIR filtering, are shown from left to right in the diagram below.

Image Source

The following figure shows the Image Source subsystem.

2 HDL-Optimized Algorithm Design

2-38

The Image Source block imports a grayscale image, then uses a MATLAB function block named Blur
and Add Noise to blur the image and inject salt-and-pepper noise. The IMFILTER function uses a 3-
by-3 averaging kernel to blur the image. The salt-and-pepper noise is injected by calling the
IMNOISE(I,'salt & pepper',D) command, where D is the noise density defined as the ratio of the
combined number of salt and pepper pixels to the total pixels in the image. This density value is
specified by the Noise Density constant block, and it must be between 0 and 1. The Image Source
subsystem outputs a 2-D matrix of a full image.

Frame To Pixels: Generating a Pixel Stream

The Frame To Pixels block converts a full image frame to a pixel stream. The Number of components
field is set to 1 for grayscale image input, and the Video format field is 240p to match that of the
video source. The sample time of the Video Source is determined by the product of Total pixels per
line and Total video lines in the Frame To Pixels block. For more information, see the Frame To Pixels
block reference page.

Pixel-Stream HDL Model

The Median Filter block is used to remove the salt and pepper noise. To learn more, refer to the
Median Filter block reference page.

Based on the filter coefficients, the Image Filter block can be used to blur, sharpen, or detect the
edges of the recovered image after median filtering. In this example, Image Filter is configured to
sharpen an image. To learn more, refer to the Image Filter block reference page.

Pixels To Frame: Converting Pixel Stream Back to Full Frame

The Pixels To Frame block converts a pixel stream to the full frame by making use of the
synchronization signals. The Number of components field and the Video format field of the Pixels To
Frame are set at 1 and 240p, respectively, to match the format of the video source.

Verifying the Pixel-Stream Processing Design

The Verification subsystem, as shown below, verifies the results from the pixel-stream HDL model
against the full-frame behavioral model.

 Noise Removal and Image Sharpening

2-39

The peak signal to noise ratio (PSNR) is calculated between the reference image and the stream
processed image. Ideally, the ratio should be inf, indicating that the output image from the Full-Frame
Behavioral Model matches that generated from the Pixel-Stream HDL Model.

Generate HDL Code and Verify Its Behavior

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command:

makehdl('NoiseRemovalAndImageSharpeningHDL/Pixel-Stream HDL Model');

To generate test bench, use the following command:

makehdltb('NoiseRemovalAndImageSharpeningHDL/Pixel-Stream HDL Model');

2 HDL-Optimized Algorithm Design

2-40

Multi-Zone Metering
This example shows how to use the Image Statistics block to perform multi-zone metering to extract a
region of interest (ROI).

There are numerous applications where the input video is divided into several zones, and the statistic
is then computed over each zone. For example, many auto-exposure algorithms compute the
difference in the mean intensity between zones. This allows the shutter controller logic to determine
whether the image is under-exposed (overall low illumination), correctly-exposed (uniform
illumination) or over-exposed (one or more ROIs have a larger mean).

Introduction

The MultizoneMeteringHDL.slx system is shown below.

The green and red lines represent full-frame processing and pixel-stream processing, respectively.
The color difference indicates the change in the image rate on the streaming branch of the model.
This rate transition is because the pixel stream is sent out in the same amount of time as the full
video frames and therefore it is transmitted at a higher rate.

In this example, the Pixel-Stream ROI extraction subsystem calculates the mean intensity value
over 12 predefined ROIs in a frame and outputs the index number (1-12) that corresponds to the most
illuminated ROI. The downstream Mask Selection subsystem accepts this index number and outputs
the associated binary mask image. The binary mask image is applied to the source video to display
only the most illuminated ROI, and mask off the other 11 ROIs. The Delay block at the top level of the
model is used to match the latency introduced by pixel-stream processing.

One frame of the source image, the binary mask image, and the ROI output, are shown from left to
right in the diagram below.

 Multi-Zone Metering

2-41

You can generate HDL code from the Pixel-Stream ROI Extraction subsystem.

Video Source

The video format is 240p. Each frame consists of 240 lines and 320 pixels per line. In this example,
video frames are divided into 12 non-overlapping rectangular ROIs, denoted as ROI number 1 to 12,
as shown in the diagram below. Each ROI includes one key of the input keypad image.

ROI number 1 has a 107-pixel width and a 60-pixel height, and the (x,y) coordinate of its top-left pixel
is (1,1). ROI number 2 has a 107-pixel width and a 60-pixel height, and the coordinate of its top left
pixel is (108,1), and so on. The first frame of the input video has brighter pixels within ROI number 1,
as shown above. The second frame has brighter pixels within ROI number 2, and so on.

Frame To Pixels: Generating a Pixel Stream

Frame To Pixels converts a full-frame image to a pixel stream. To simulate the effect of horizontal
and vertical blanking periods found in real life hardware video systems, the active image is

2 HDL-Optimized Algorithm Design

2-42

augmented with non-image data. For more information on the streaming pixel protocol, see
“Streaming Pixel Interface” on page 1-2. The Frame To Pixels block is configured as shown:

The Number of components field is set to 1 for grayscale image input, and the Video format field
is 240p to match that of the video source.

 Multi-Zone Metering

2-43

In this example, the Active Video region corresponds to the 240x320 matrix of the source image. Six
other parameters, namely, Total pixels per line, Total video lines, Starting active line, Ending
active line, Front porch, and Back porch specify how many non-image data will be augmented on
the four sides of the Active Video. For more information, see the Frame To Pixels block reference
page.

Note that the sample time of the Video Source is determined by the product of Total pixels per line
and Total video lines.

Pixel-Stream ROI Extraction

The Pixel-Stream ROI Extraction subsystem contains two subsystems, namely, Multi-Zone
Metering and ROI Indexer.

The Multi-Zone Metering subsystem computes the mean intensity value over the 12 predefined
ROIs. The resulting 12 mean values are passed to the downstream ROI Indexer subsystem. ROI
Indexer outputs the index (1-12) of the ROI that has the maximum mean intensity value (or
equivalently, the most illuminated ROI) among the 12 candidates.

The structure of the Multi-Zone Metering subsystem is shown in the diagram below.

2 HDL-Optimized Algorithm Design

2-44

The Multi-Zone Metering subsystem contains 12 identical ROIStatistic subsystems. Each instance
of ROIStatistic calculates the mean intensity value over one ROI. All of the 12 ROIStatistic
subsystems take pixel and ctrl as their first two inputs. The remaining four inputs specify which ROI
this subsystem works on and they are different from one subsystem to another. For example, the
ROIStaticstic1 subsystem focuses on ROI number 1 by accepting the (x,y) coordinate of the top left
pixel (1,1), ROI width of 107, and height 60. Similarly, the ROIStaticstic12 subsystem focuses on
ROI number 12, whose (x,y) coordinate of the top left pixel is (215,181), and whose width and height
are 106 and 60, respectively.

The ROIStatistic1 - ROIStatistic12 subsystems share the same structure shown below.

 Multi-Zone Metering

2-45

It contains a ROI subsystem followed by an Image Statistics block. The ROI subsystem manipulates
the control signal of the original 240p image, and constructs the control signals associated only with
the ROI specified by (x,y) pair, ROIWidth, and ROIHeight.

Mask Selection

The structure of the Mask Selection subsystem is shown below.

Twelve mask images are available, corresponding to the 12 different ROIs. These mask patterns are
shown as BM{1} to BM{12} in the above diagram. When you open the model, the model loads the
predefined BM cell array into the workspace. Masks are binary images with 240p video format. For
mask BM{n} (n=1,2,...,12), the ROI number n is filled with logical 1 pixels (white) and all the other
11 ROIs are filled with logical 0 pixels (black). Based on the index input (1-12), the Mask Selection
subsystem outputs the associated binary mask image.

HDL Code Generation

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command.

makehdl('MultizoneMeteringHDL/Pixel-Stream ROI Extraction')

2 HDL-Optimized Algorithm Design

2-46

To generate a test bench, use the following command. Note that the test bench generation takes a
long time due to the large data size. You may want to reduce the simulation time before generating
the test bench.

makehdltb('MultizoneMeteringHDL/Pixel-Stream ROI Extraction')

 Multi-Zone Metering

2-47

Harris Corner Detection
This example shows how to use edge detection as the first step in corner detection. The algorithm is
suitable for FPGAs.

Corner detection is used in computer vision systems to find features in an image. It is often one of the
first steps in applications like motion detection, tracking, image registration and object recognition.

A corner is intuitively defined as the intersection of two edges. This example uses the Harris &
Stephens algorithm [1] in which the computation is simplified using an approximation of the
eigenvalues of the Harris matrix. For another corner detection algorithm for FPGAs, see the “FAST
Corner Detection” on page 2-53 example.

This example model provides a hardware-compatible algorithm. You can implement this algorithm on
a board using a Xilinx™ Zynq™ reference design. See “Corner Detection and Image Overlay with
Zynq-Based Hardware” (Vision HDL Toolbox Support Package for Xilinx Zynq-Based Hardware).

Introduction

The CornerDetectionHDL.slx system is shown below. The HDL Corner Algorithm subsystem contains
a Corner Detector block with the Method parameter set to Harris.

2 HDL-Optimized Algorithm Design

2-48

First Step: Find the Gradients

The first step in the Harris algorithm is to find the edges in the image. The Corner Detector block

uses two gradient image filters with coefficients and to produce gradients
and . Square and cross-multiply to form , and .

Second Step: Circular Filtering

The second step of the algorithm is to perform Gaussian filtering to average , and over a
circular window. The size of the circular window determines the scale of the detected corner. The
block uses a 5x5 window. For three components, the block uses three filters with the same filter
coefficients.

Final Step: Form the Harris Matrix

The final step of the algorithm is to estimate the eigenvalue of the Harris matrix. The Harris matrix is
a symmetric matrix similar to a covariance matrix. The main diagonal is composed of the two
averages of the gradients squared and . The off diagonal elements are the averages of the
gradient cross-product . The Harris matrix is:

Compute the Response from the Harris Matrix

The key simplification of the Harris algorithm is estimating the eigenvalues of the Harris matrix as
the determinant minus the scaled trace squared.

 where is a constant typically 0.04.

The corner metric response, , expressed using the gradients is:

When the response is larger than a predefined threshold, a corner is detected:

Fixed-Point Settings

The overall function from input image to output corner metric response is a fourth-order polynomial.
This leads to some challenges determining the fixed-point scaling for each step of the computation.
Since we are targeting FPGAs with built-in multipliers, the best strategy is to allow bit growth until
the multiplier size is reached and then start to quantize results on a selective basis to stay within the
bounds of the provided multipliers.

 Harris Corner Detection

2-49

The input pixel stream is 8-bit grayscale pixel data. Computing the gradients does not add much bit-
growth since the filter kernel has only +1 and -1 coefficients. The result is a full-precision 9-bit signed
fixed-point type.

Squaring and cross-multiplying the gradients produces signed 18-bit results, still in full precision.
Many common FPGA multipliers have 18-bit or 20-bit input wordlengths, so you will have to quantize
at the next step.

The next step is to apply a circular window to the three components using three Image Filters with
Gaussian coefficients. The coefficients are quantized to 18-bit unsigned numbers to fit the FPGA
multipliers. To find the best fraction precision for the coefficients, create a fixed-point number using
the fi() function but only specifying the wordlength. In this case a fractional scaling of 21-bits is best
since the largest value in the coefficient matrix is between 1/8 and 1/16.

coeffs = fi(fspecial('gaussian',[5,5],1.5),0,18)

coeffs =

 0.0144 0.0281 0.0351 0.0281 0.0144
 0.0281 0.0547 0.0683 0.0547 0.0281
 0.0351 0.0683 0.0853 0.0683 0.0351
 0.0281 0.0547 0.0683 0.0547 0.0281
 0.0144 0.0281 0.0351 0.0281 0.0144

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 18
 FractionLength: 21

Results of the Simulation

You can see that the resulting images from the simulation are very similar but not exactly the same.
The small differences in simulation results are because the behavioral model uses C integer
arithmetic rules and the quantization is different from the HDL-ready corner detection block.

Using Simulink, you can understand these differences and decide if the errors are allowable for your
application. If they are not acceptable, you can increase the bit-widths of the operators, although this
increases the area used in the FPGA.

2 HDL-Optimized Algorithm Design

2-50

HDL Code Generation

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command.

makehdl('CornerDetectionHDL/HDL Corner Algorithm')

To generate the test bench, use the following command. Note that test bench generation takes a long
time due to the large data size. You may want to reduce the simulation time before generating the
test bench.

makehdltb('CornerDetectionHDL/HDL Corner Algorithm')

The part of this model that you can implement on an FPGA is the part between the Frame To Pixels
and Pixels To Frame blocks. That is the subsystem called HDL Corner Algorithm, which includes all
elements of the corner detection algorithm seen above. The rest of the model, including the
Behavioral Corner Algorithm and the sources and sinks, form our Simulink test bench.

Going Further

The Harris & Stephens algorithm is based on approximating the eigenvalues of the Harris matrix as
shown above. The Harris algorithm uses as a metric, avoiding
any division or square-root operations. Another way to do corner detection is to compute the actual
eigenvalues.

The analytical solution for the eigenvalues of a 2x2 matrix is well-known and can also be used in
corner detection. When the eigenvalues are both positive and large with the same scale, a corner has
been found.

Substituting in our values we get:

For FPGA implementation it is important to notice the repeated value of . We can compute this
value once and then square to combine with . This means that the eigenvalue algorithm
requires only two multipliers but at the expense of more adders and subtractors and a square-root
function, which requires several multipliers on its own.

 Harris Corner Detection

2-51

You must then compare both eigenvalues to a constant value to make sure they are large. Since the
eigenvalues scale up with image intensity, you also need to make sure they are both around the same
size. You can do this by subtracting one from another and making sure that result is smaller than
some predefined threshold value. Notice that in this subtraction, the first terms cancel out and you
are left with:

You can rearrange this so that it is very similar to Harris metric above:

Expanding the matrix gives:

The similarity between the difference of the eigenvalues and the Harris metric shows how the
Harris approximation works. If you rearrange the terms under the square-root and swap the signs so
the result must be greater than or equal to a predefined threshold, you arrive at essentially the Harris
metric with some scaling.

References

[1] C. Harris and M. Stephens (1988). "A combined corner and edge detector". Proceedings of the 4th
Alvey Vision Conference. pp. 147-151.

2 HDL-Optimized Algorithm Design

2-52

FAST Corner Detection
This example shows how to perform corner detection using the features-from-accelerated-segment
test (FAST) algorithm. The algorithm is suitable for FPGAs.

Corner detection is used in computer vision systems to find features in an image. It is often one of the
first steps in applications like motion detection, tracking, image registration and object recognition.

The FAST algorithm determines if a corner is present by testing a circular area around the potential
center of the corner. The test detects a corner if a contiguous section of pixels are either brighter
than the center plus a threshold or darker than the center minus a threshold. For another corner
detection algorithm for FPGAs, see the “Harris Corner Detection” on page 2-48 example.

In a software implementation the FAST algorithm allows for a quick test to rule out potential corners
by only testing the four pixels along the axes. Software algorithms only perform the full test if the
quick test passes. A hardware implementation can easily perform all the tests in parallel so a quick
test is not particularly advantageous and is not included in this example.

The FAST algorithm can be used at many sizes or scales. This example detects corners using a
sixteen-pixel circle. In these sixteen pixels, if any nine contiguous pixel meet the brighter or darker
limit then a corner is detected.

MATLAB FAST Corner Detection

The Computer Vision System Toolbox™ includes a software FAST corner detection algorithm in the
detectFASTFeatures function. This example uses this function as the behavioral model to compare
against the FAST algorithm design for hardware in Simulink®. The function has parameters for
setting the minimum contrast and the minimum quality.

The minimum contrast parameter is the threshold value that is added or subtracted from the center
pixel value before comparing to the ring of pixels.

The minimum quality parameter controls which detected corners are "strong" enough to be marked
as actual corners. The strength metric in the original FAST paper is based on summing the
differences of the pixels in the circular area to the central pixel [2]. Later versions of this algorithm
use a different strength metric based on the smallest change in pixel value that would make the
detection no longer a corner. detectFastFeatures uses the smallest-change metric.

This code reads the first frame of video, converts it to gray scale, and calls detectFASTFeatures.
The result is a vector of corner locations. To display the corner locations, use the vector to draw
bright green dots over the corner pixels in the output frame.

v = VideoReader('rhinos.avi');
I = rgb2gray(readFrame(v));
% create output RGB frame
Y = repmat(I,[1 1 3]);
corners = detectFASTFeatures(I,'minContrast',15/255,'minQuality',1/255);
locs = corners.Location;
for ii = 1:size(locs,1)
 Y(floor(locs(ii,2)),floor(locs(ii,1)),2) = 255; % green dot
end
imshow(Y)

 FAST Corner Detection

2-53

Limitations of the FAST Algorithm

Other corner detection methods work very differently from the FAST method and a surprising result
is that FAST does not detect corners on computer generated images that are perfectly aligned to the
x and y axes. Since the detected corner must have a ring of darker or lighter pixel values around the
center that includes both edges of the corner, crisp images do not work well. For example, try the
FAST algorithm on the input image used in the Harris “Harris Corner Detection” on page 2-48
example.

I = imread('cornerboxes.png');
Ig = rgb2gray(I);
corners = detectFASTFeatures(Ig,'minContrast',15/255,'minQuality',1/255)

corners =

 0x1 cornerPoints array with properties:

 Location: [0x2 single]
 Metric: [0x1 single]
 Count: 0

You can see that the function detected zero corners. This because the FAST algorithm requires a ring
of contrasting pixels more than halfway around the center of corner. In the computer generated
image, both edges of a box at a corner are in the ring of pixel used, so the test for a corner fails. A
work-around to this problem is to add blur (by applying a Gaussian filter) to the image so that the
corners are less precise but can be detected. After blurring, the FAST algorithm now detects over 100
corners.

h = fspecial('gauss',5);
Ig = imfilter(Ig,h);
corners = detectFASTFeatures(Ig,'minContrast',15/255,'minQuality',1/255)

2 HDL-Optimized Algorithm Design

2-54

locs = corners.Location;
for ii = 1:size(locs,1)
 I(floor(locs(ii,2)),floor(locs(ii,1)),2) = 255; % green dot
end
imshow(I)

corners =

 136x1 cornerPoints array with properties:

 Location: [136x2 single]
 Metric: [136x1 single]
 Count: 136

Behavioral Model for Verification

The Simulink model uses the detectFASTFeatures function as a behavioral model to verify the
results of the hardware algorithm. You can use a MATLAB Function block to run MATLAB code in
Simulink.

modelname = 'FASTCornerHDL';
open_system(modelname);
set_param(modelname,'SampleTimeColors','on');
set_param(modelname,'SimulationCommand','Update');
set_param(modelname,'Open','on');
set(allchild(0),'Visible','off');

 FAST Corner Detection

2-55

The code in a MATLAB Function block must either generate C code or be declared extrinsic. An
extrinsic declaration allows the specified function to run in MATLAB while the rest of the MATLAB
Function block runs in Simulink. The detectFASTFeatures function does not support code
generation, so the MATLAB Function block must use an extrinsic helper function.

For frame-by-frame visual comparison, and the ability to vary the contrast parameter, the helper
function takes an input image and the minimum contrast as inputs. It returns an output image with
green dots marking the detected corners.

function Y = FASTHelper(I,minContrast)
Y = I;
corners = detectFASTFeatures(I(:,:,1),'minContrast',double(minContrast)/255,'minQuality',1/255);
locs = corners.Location;
for ii = 1:size(locs,1)
 Y(floor(locs(ii,2)),floor(locs(ii,1)),2) = 255; % green dot
end

end

The MATLAB Function block must have a defined size for the output array. A fast way to define the
output size is to copy the input to the output before calling the helper function. This is the code inside
the MATLAB Function block:

function Y = fcn(I,minContrast)
 coder.extrinsic('FASTHelper');
 Y = I;
 Y = FASTHelper(I,minContrast);
end

Implementation for HDL

The FAST algorithm implemented in the Vision HDL Toolbox Corner Detector block in this model tests
9 contiguous pixels from a ring of 16 pixels, and compares their values to the center pixel value. A
kernel of 7x7 pixels around each test pixel includes the 16-pixel ring. The diagram shows the center
pixel and the ring of 16 pixels around it that is used for the test. The ring pixels, clockwise from the
top-middle, are

 indices = [22 29 37 45 46 47 41 35 28 21 13 5 4 3 9 15];

2 HDL-Optimized Algorithm Design

2-56

These pixel indices are used for selection and comparison. The order must be contiguous, but the ring
can begin at any point.

After computing corner metrics using these rings of pixels, the algorithm determines the maximum
corner metric in each region and suppresses other detected corners. The model then overlays the
non-suppressed corner markers onto the original input image.

The hardware algorithm is in the FASTHDLAlgorithm subsystem. This subsystem supports HDL code
generation.

open_system([modelname '/FASTHDLAlgorithm'],'force');

Corner Detection

To determine the presence of a corner, look for all possible 9-pixel contiguous segments of the ring
that have values either greater than or less than the threshold value.

In hardware, you can perform all these comparisons in parallel. Each comparator block expands to 16
comparators. The output of the block is 16 binary decisions representing each segment of the ring.

Non-Maximal Suppression

The FAST algorithm identifies many, many potential corners. To reduce subsequent processing, all
corners except the corners with the maximum corner metric in a particular region can be removed or
suppressed. There are many algorithms for non-maximal suppression suitable for software
implementation, but few suitable for hardware. In software, a gradient-based approach is used, which
can be resource intensive in hardware. In this model a simple but very effective technique is to
compare corner metrics in a 5x5 kernel and produce a boolean result. The boolean output is true if

 FAST Corner Detection

2-57

the corner metric in the center of the kernel is greater than zero (i.e. it is a corner) and also it is the
maximum of all the other corner metrics in the 5x5 region. The greater-than-zero condition matches
setting minQuality to 1 for the detectFASTFeatures function.

Since the processing of the pixel stream is from left to right and top to bottom, the results contain
some directional effects, such as that the detected corners do not always perfectly align with the
objects. The NonMaxSuppress subsystem includes a constant block that allows you to disable
suppression and visualize the complete results.

open_system([modelname '/FASTHDLAlgorithm/NonMaxSuppress'],'force');

Align and Overlay

At the output of the NonMaxSuppress subsystem, the pixel stream includes markers for the strongest
corner in each 5x5 region. Next, the model realigns the detected corners with the original pixel
stream using the Pixel Stream Aligner block. After the original stream and the markers are aligned in
time, the model overlays a green dot on the corners. The Overlay subsystem contains an alpha mixer
with constants for the color and alpha values.

The output viewers show the overlaid green dots for corners detected. The Behavioral Video Viewer
shows the output of the detectFastFeatures function, and the HDL Video Viewer shows the
output of the HDL algorithm.

2 HDL-Optimized Algorithm Design

2-58

Going Further

The non-maximal suppression algorithm could be improved by following gradients and using a
multiple-pass strategy, but that computation would also use more hardware resources.

Conclusion

This example shows how to start using detectFASTFeatures in MATLAB and then move to
Simulink for the FPGA portion of the design. The hardware algorithm in the Corner Detector block
includes a test of the ring around the central pixel in a kernel, and a corner strength metric. The
model uses a non-maximal suppression function to remove all but the strongest detected corners. The
design then overlays the corner locations onto the original video input, highlighting the corners in
green.

References

[1] Rosten, E., and T. Drummond. "Fusing Points and Lines for High Performance Tracking"
Proceedings of the IEEE International Conference on Computer Vision, Vol. 2 (October 2005): pp.
1508-1511.

[2] Rosten, E., and T. Drummond. "Machine Learning for High-Speed Corner Detection" Computer
Vision - ECCV 2006 Lecture Notes in Computer Science, 2006, 430-43. doi:10.1007/11744023_34.

 FAST Corner Detection

2-59

Lane Detection
This example shows how to implement a lane-marking detection algorithm for FPGAs.

Lane detection is a critical processing stage in Advanced Driving Assistance Systems (ADAS).
Automatically detecting lane boundaries from a video stream is computationally challenging and
therefore hardware accelerators such as FPGAs and GPUs are often required to achieve real time
performance.

In this example model, an FPGA-based lane candidate generator is coupled with a software-based
polynomial fitting engine, to determine lane boundaries.

System Overview

The LaneDetectionHDL.slx system is shown below. The HDLLaneDetector subsystem represents the
hardware accelerated part of the design, while the SWLaneFitandOverlay subsystem represent the
software based polynomial fitting engine. Prior to the Frame to Pixels block, the RGB input is
converted to intensity color space.

HDL Lane Detector

The HDL Lane Detector represents the hardware-accelerated part of the design. This subsystem
receives the input pixel stream from the front-facing camera source, transforms the view to obtain
the birds-eye view, locates lane marking candidates from the transformed view and then buffers them
up into a vector to send to the software side for curve fitting and overlay.

2 HDL-Optimized Algorithm Design

2-60

Birds-Eye View

The Birds-Eye View block transforms the front-facing camera view to a birds-eye perspective.
Working with the images in this view simplifies the processing requirements of the downstream lane
detection algorithms. The front-facing view suffers from perspective distortion, causing the lanes to
converge at the vanishing point. The perspective distortion is corrected by applying an inverse
perspective transform.

The Inverse Perspective Mapping (IPM) is given by the following expression:

The homography matrix, h, is derived from four intrinsic parameters of the physical camera setup,
namely the focal length, pitch, height, and principle point (from a pinhole camera model). For more
details, refer to the Computer Vision Toolbox™ documentation.

You can estimate the homography matrix by using the Computer Vision Toolbox™
estimateGeometricTransform2D function or the Image Processing Toolbox™ fitgeotrans
function to create a projective2d object. These functions require a set of matched points between
the source frame and birds-eye view frame. The source frame points are taken as the vertices of a
trapezoidal region of interest, and can extend past the source frame limits to capture a larger region.
For the trapezoid shown the point mapping is:

Where bAPPL and bAVL are the birds-eye view active pixels per line and active video lines
respectively.

 Lane Detection

2-61

Direct evaluation of the source (front-facing) to destination (birds-eye) mapping in real time on FPGA/
ASIC hardware is challenging. The requirement for division along with the potential for non-
sequential memory access from a frame buffer mean that the computational requirements of this part
of the design are substantial. Therefore instead of directly evaluating the IPM calculation in real time,
an offline analysis of the input to output mapping has been performed and used to pre-compute a
mapping scheme. This is possible as the homography matrix is fixed after factory calibration/
installation of the camera, due to the camera position, height and pitch being fixed.

In this particular example, the birds-eye output image is a frame of [700x640] dimensions, whereas
the front-facing input image is of [480x640] dimensions. There is not sufficient blanking available in
order to output the full birds-eye frame before the next front-facing camera input is streamed in. The
Birds-Eye view block will therefore not accept any new frame data until it has finished processing the
current birds-eye frame.

Line Buffering and Address Computation

A full sized projective transformation from input to output would result in a [900x640] output image.
This requires that the full [480x640] input image is stored in memory, while the source pixel location
is calculated using the source location and homography matrix. Ideally on-chip memory should be
used for this purpose, removing the requirement for an off-chip frame buffer.

You can determine the number of lines to buffer on-chip by performing inverse row mapping using
the homography matrix. The following script calculates the homography matrix from the point
mapping, using it to an inverse transform to map the source frame rows to birds-eye view rows.

% Source & Birds-Eye Frame Parameters
% AVL: Active Video Lines, APPL: Active Pixels Per Line
sAVL = 480;
sAPPL = 640;
% Birds-Eye Frame
bAVL = 700;
bAPPL = 640;

% Determine Homography Matrix
% Point Mapping [NW; NE; SW; SE]
sourcePoints = [218,196; 421,196; -629,405; 1276,405];
birdsEyePoints = [001,001; 640,001; 001,900; 640,900];
% Estimate Transform
tf = estimateGeometricTransform2D(sourcePoints,birdsEyePoints,'projective');
% Homography Matrix
h = tf.T;

% Visualize Birds-Eye ROI on Source Frame
vidObj = VideoReader('visionhdl_caltech.avi');
vidFrame = readFrame(vidObj);
vidFrameAnnotated = insertShape(vidFrame,'Polygon',[sourcePoints(1,:) ...
 sourcePoints(2,:) sourcePoints(4,:) sourcePoints(3,:)], ...
 'LineWidth',5,'Color','red');
vidFrameAnnotated = insertShape(vidFrameAnnotated,'FilledPolygon', ...
 [sourcePoints(1,:) sourcePoints(2,:) sourcePoints(4,:) ...
 sourcePoints(3,:)],'LineWidth',5,'Color','red','Opacity',0.2);
figure(1);
subplot(2,1,1);
imshow(vidFrameAnnotated)
title('Source Video Frame');

% Determine Required Birds-Eye Line Buffer Depth
% Inverse Row Mapping at Frame Centre

2 HDL-Optimized Algorithm Design

2-62

x = round(sourcePoints(2,1)-((sourcePoints(2,1)-sourcePoints(1,1))/2));
Y = zeros(1,bAVL);
for ii = 1:1:bAVL
 [~,Y(ii)] = transformPointsInverse(tf,x,ii);
end
numRequiredRows = ceil(Y(0.98*bAVL) - Y(1));

% Visualize Inverse Row Mapping
subplot(2,1,2);
plot(Y,'HandleVisibility','off'); % Inverse Row Mapping
xline(0.98*bAVL,'r','98%','LabelHorizontalAlignment','left', ...
 'HandleVisibility','off'); % Line Buffer Depth
yline(Y(1),'r--','HandleVisibility','off')
yline(Y(0.98*bAVL),'r')
title('Birds-Eye View Inverse Row Mapping');
xlabel('Output Row');
ylabel('Input Row');
legend(['Line Buffer Depth: ',num2str(numRequiredRows),' lines'], ...
 'Location','northwest');
axis equal;
grid on;

 Lane Detection

2-63

The plot shows the mapping of input line to output line revealing that in order to generate the first
700 lines of the top down birds eye output image, around 50 lines of the input image are required.
This is an acceptable number of lines to store using on-chip memory.

Lane Detection

With the birds-eye view image obtained, the actual lane detection can be performed. There are many
techniques which can be considered for this purpose. To achieve an implementation which is robust,
works well on streaming image data and which can be implemented in FPGA/ASIC hardware at
reasonable resource cost, this example uses the approach described in [1]. This algorithm performs a

2 HDL-Optimized Algorithm Design

2-64

full image convolution with a vertically oriented first order Gaussian derivative filter kernel, followed
by sub-region processing.

Vertically Oriented Filter Convolution

Immediately following the birds-eye mapping of the input image, the output is convolved with a filter
designed to locate strips of high intensity pixels on a dark background. The width of the kernel is 8
pixels, which relates to the width of the lines that appear in the birds-eye image. The height is set to
16 which relates to the size of the dashed lane markings which appear in the image. As the birds-eye
image is physically related to the height, pitch etc. of the camera, the width at which lanes appear in
this image is intrinsically related to the physical measurement on the road. The width and height of
the kernel may need to be updated when operating the lane detection system in different countries.

 Lane Detection

2-65

The output of the filter kernel is shown below, using jet colormap to highlight differences in intensity.
Because the filter kernel is a general, vertically oriented Gaussian derivative, there is some response
from many different regions. However, for the locations where a lane marking is present, there is a
strong positive response located next to a strong negative response, which is consistent across
columns. This characteristic of the filter output is used in the next stage of the detection algorithm to
locate valid lane candidates.

2 HDL-Optimized Algorithm Design

2-66

Lane Candidate Generation

After convolution with the Gaussian derivative kernel, sub-region processing of the output is
performed in order to find the coordinates where a lane marking is present. Each region consists of
18 lines, with a ping-pong memory scheme in place to ensure that data can be continuously streamed
through the subsystem.

 Lane Detection

2-67

Histogram Column Count

Firstly, HistogramColumnCount counts the number of thresholded pixels in each column over the 18
line region. A high column count indicates that a lane is likely present in the region. This count is
performed for both the positive and the negative thresholded images. The positive histogram counts
are offset to account for the kernel width. Lane candidates occur where the positive count and
negative counts are both high. This exploits the previously noted property of the convolution output
where positive tracks appear next to negative tracks.

Internally, the column counting histogram generates the control signalling that selects an 18 line
region, computes the column histogram, and outputs the result when ready. A ping-pong buffering
scheme is in place which allows one histogram to be reading while the next is writing.

Overlap and Multiply

As noted, when a lane is present in the birds-eye image, the convolution result will produce strips of
high-intensity positive output located next to strips of high-intensity negative output. The positive and
negative column count histograms locate such regions. In order to amplify these locations, the
positive count output is delayed by 8 clock cycles (an intrinsic parameter related to the kernel width),
and the positive and negative counts are multiplied together. This amplifies columns where the
positive and negative counts are in agreement, and minimizes regions where there is disagreement
between the positive and negative counts. The design is pipelined in order to ensure high throughput
operation.

2 HDL-Optimized Algorithm Design

2-68

Zero Crossing Filter

At the output of the Overlap and Multiply subsystem, peaks appear where there are lane markings
present. A peak detection algorithm determines the columns where lane markings are present.
Because the SNR is relatively high in the data, this example uses a simple FIR filtering operation
followed by zero crossing detection. The Zero Crossing Filter is implemented using the Discrete FIR
Filter block from DSP System Toolbox™. It is pipelined for high-throughput operation.

Store Dominant Lanes

The zero crossing filter output is then passed into the Store Dominant Lanes subsystem. This
subsystem has a maximum memory of 7 entries, and is reset every time a new batch of 18 lines is
reached. Therefore, for each sub-region 7 potential lane candidates are generated. In this subsystem,
the Zero Crossing Filter output is streamed through, and examined for potential zero crossings. If a
zero crossing does occur, then the difference between the address immediately prior to zero crossing
and the address after zero crossing is taken in order to get a measurement of the size of the peak.
The subsystem stores the zero crossing locations with the highest magnitude.

 Lane Detection

2-69

Compute Ego Lanes

The Lane Detection subsystem outputs the 7 most viable lane markings. In many applications, we are
most interested in the lane markings that contain the lane in which the vehicle is driving. By
computing the so called "Ego-Lanes" on the hardware side of the design, we can reduce the memory
bandwidth between hardware and software, by sending 2 lanes rather than 7 to the processor. The
Ego-Lane computation is split into two subsystems. The FirstPassEgoLane subsystem assumes that
the centre column of the image corresponds to the middle of the lane, when the vehicle is correctly
operating within the lane boundaries. The lane candidates which are closest to the center are
therefore assumed as the ego lanes. The Outlier Removal subsystem maintains an average width of
the distance from lane markings to centre coordinate. Lane markers which are not within tolerance of
the current width are rejected. Performing early rejection of lane markers gives better results when
performing curve fitting later on in the design.

2 HDL-Optimized Algorithm Design

2-70

Control Interface

Finally, the computed ego lanes are sent to the CtrlInterface MATLAB function subsystem. This state
machine uses the four control signal inputs - enable, hwStart, hwDone, and swStart to determine
when to start buffering, accept new lane coordinate into the 40x1 buffer and finally indicate to the
software that all 40 lane coordinates have been buffered and so the lane fitting and overlay can be
performed. The dataReady signal ensures that software will not attempt lane fitting until all 40
coordinates have been buffered, while the swStart signal ensures that the current set of 40
coordinates will be held until lane fitting is completed.

Software Lane Fit and Overlay

The detected ego-lanes are then passed to the SW Lane Fit and Overlay subsystem, where robust
curve fitting and overlay is performed. Recall that the birds-eye output is produced once every two
frames or so rather than on every consecutive frame. The curve fitting and overlay is therefore placed
in an enabled subsystem, which is only enabled when new ego lanes are produced.

 Lane Detection

2-71

Driver

The Driver MATLAB Function subsystem controls the synchronization between hardware and
software. Initially it is in a polling state, where it samples the dataReady input at regular intervals per
frame to determine when hardware has buffered a full [40x1] vector of lane coordinates. Once this
occurs, it transitions into software processing state where swStart and process outputs are held high.
The Driver remains in the software processing state until swDone input is high. Seeing as the process
output loops back to swDone input with a rate transition block in between, there is effectively a
constant time budget specified for the FitLanesandOverlay subsystem to perform the fitting and
overlay. When swDone is high, the Driver will transition into a synchronization state, where swStart is
held low to indicate to hardware that processing is complete. The synchronization between software
and hardware is such that hardware will hold the [40x1] vector of lane coordinates until the swStart
signal transitions back to low. When this occurs, dataReady output of hardware will then transition
back to low.

Fit Lanes and Overlay

The Fit Lanes and Overlay subsystem is enabled by the Driver. It performs the necessary arithmetic
required in order to fit a polynomial onto the lane coordinate data received at input, and then draws
the fitted lane and lane coordinates onto the Birds-Eye image.

Fit Lanes

The Fit Lanes subsystem runs a RANSAC based line-fitting routine on the generated lane candidates.
RANSAC is an iterative algorithm which builds up a table of inliers based on a distance measure

2 HDL-Optimized Algorithm Design

2-72

between the proposed curve, and the input data. At the output of this subsystem, there is a [3x1]
vector which specifies the polynomial coefficients found by the RANSAC routine.

Overlay Lane Markings

The Overlay Lane Markings subsystem performs image visualization operations. It overlays the ego
lanes and curves found by the lane-fitting routine.

Results of the Simulation

The model includes two video displays shown at the output of the simulation results. The BirdsEye
display shows the output in the warped perspective after lane candidates have been overlaid,
polynomial fitting has been performed and the resulting polynomial overlaid onto the image. The
OriginalOverlay display shows the BirdsEye output warped back into the original perspective.

Due to the large frame sizes used in this model, simulation can take a relatively long time to
complete. If you have an HDL Verifier™ license, you can accelerate simulation speed by directly
running the HDL Lane Detector subsystem in hardware using FPGA in the Loop.

 Lane Detection

2-73

2 HDL-Optimized Algorithm Design

2-74

HDL Code Generation

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command.

makehdl('LaneDetectionHDL/HDLLaneDetector')

To generate the test bench, use the following command. Note that test bench generation takes a long
time due to the large data size. You may want to reduce the simulation time before generating the
test bench.

makehdltb('LaneDetectionHDL/HDLLaneDetector')

For faster test bench simulation, you can generate a SystemVerilog DPIC test bench using the
following command.

makehdltb('LaneDetectionHDL/HDLLaneDetector','GenerateSVDPITestBench','ModelSim')

 Lane Detection

2-75

Conclusion

This example has provided insight into the challenges of designing ADAS systems in general, with
particular emphasis paid to the acceleration of critical parts of the design in hardware.

References

[1] R. K. Satzoda and Mohan M. Trivedi, "Vision based Lane Analysis: Exploration of Issues and
Approaches for Embedded Realization", 2013 IEEE Conference on Computer Vision and Pattern
Recognition.

[2] Video from Caltech Lanes Dataset - Mohamed Aly, "Real time Detection of Lane Markers in Urban
Streets", 2008 IEEE Intelligent Vehicles Symposium - used with permission.

See Also

More About
• “Hardware-Software Co-Design Workflow for SoC Platforms” (HDL Coder)

2 HDL-Optimized Algorithm Design

2-76

Generate Cartoon Images Using Bilateral Filtering
This example shows how to generate cartoon lines and overlay them onto an image.

Bilateral filtering [1] is used in computer vision systems to filter images while preserving edges and
has become ubiquitous in image processing applications. Those applications include denoising while
preserving edges, texture and illumination separation for segmentation, and cartooning or image
abstraction to enhance edges in a quantized color-reduced image.

Bilateral filtering is simple in concept: each pixel at the center of a neighborhood is replaced by the
average of its neighbors. The average is computed using a weighted set of coefficients. The weights
are determined by the spatial location in the neighborhood (as in a traditional Gaussian blur filter),
and the intensity difference from the center value of the neighborhood.

These two weighting factors are independently controllable by the two standard deviation parameters
of the bilateral filter. When the intensity standard deviation is large, the bilateral filter acts more like
a Gaussian blur filter, because the intensity Gaussian is less peaked. Conversely, when the intensity
standard deviation is smaller, edges in the intensity are preserved or enhanced.

This example model provides a hardware-compatible algorithm. You can generate HDL code from this
algorithm, and implement it on a board using a Xilinx™ Zynq™ reference design. See “Bilateral
Filtering with Zynq-Based Hardware” (Vision HDL Toolbox Support Package for Xilinx Zynq-Based
Hardware).

Introduction

The BilateralFilterHDLExample.slx system is shown here.

modelname = 'BilateralFilterHDLExample';
open_system(modelname);
set_param(modelname, 'SampleTimeColors', 'on');
set_param(modelname,'SimulationCommand','Update');
set_param(modelname, 'Open', 'on');
set(allchild(0),'Visible', 'off');

Step 1: Establish the Parameter Values

To achieve a modest Gaussian blur of the input, choose a relatively large spatial standard deviation of
3. To give strong emphasis to the edges of the image, choose an intensity standard deviation of 0.75.

 Generate Cartoon Images Using Bilateral Filtering

2-77

The intensity Gaussian is built from the image data in the neighborhood, so this plot represents the
maximum possible values. Note the small vertical scale on the spatial Gaussian plot.

figure('units','normalized','outerposition',[0 0.5 0.75 0.45]);
subplot(1,2,1);
s1 = surf(fspecial('gaussian',[9 9],3));
subplot(1,2,2);
s2 = surf(fspecial('gaussian',[9 9],0.75));
legend(s1,'Spatial Gaussian 3.0');
legend(s2,'Intensity Gaussian 0.75');

Fixed-Point Settings

For HDL code generation, you must choose a fixed-point data type for the filter coefficients. The
coefficient type should be an unsigned type. For bilateral filtering, the input range is always assumed
to be on the interval . Therefore, a uint8 input with a range of values from are treated as

. The calculated coefficient values are less than 1. The exact values of the coefficients depend
on the neighborhood size and the standard deviations. Larger neighborhoods spread the Gaussian
function such that each coefficient value is smaller. A larger standard deviation flattens the Gaussian
to produce more uniform values, while a smaller standard deviation produces a peaked response.

If you try a type and the coefficients are quantized such that more than half of the kernel becomes
zero for all input, the Bilateral Filter block issues a warning. If all of the coefficients are zero
after quantization, the block issues an error.

Step 2: Filter the Intensity Image

The model converts the incoming RGB image to intensity using the Color Space Converter block.
Then the grayscale intensity image is sent to the Bilateral Filter block, which is configured for a 9-
by-9 neighborhood and the parameters established previously.

The bilateral filter provides some Gaussian blur but will strongly emphasize larger edges in the image
based on the 9-by-9 neighborhood size.

open_system([modelname '/HDLAlgorithm'],'force');

2 HDL-Optimized Algorithm Design

2-78

Step 3: Compute Gradient Magnitude

Next, the Sobel Edge Detector block computes the gradient magnitude. Since the image was pre-
filtered using a bilateral filter with a fairly large neighborhood, the smaller, less important edges in
the image will not be emphasized during edge detection.

The threshold parameter for the Sobel Edge Detector block can come from a constant value on the
block mask or from a port. The block in this model uses port to allow the threshold to be set
dynamically. This threshold value must be computed for your final system, but for now, you can just
choose a good value by observing results.

Synchronize the Computed Edges

To overlay the thresholded edges onto the original RGB image, you must realign the two streams. The
processing delay of the bilateral filter and edge detector means that the thresholded edge stream and
the input RGB pixel stream are not aligned in time.

The Pixel Stream Aligner block brings them back together. The RGB pixel stream is connected to the
upper pixel input port, and the binary threshold image pixel is connected to the reference input port.
The block delays the RGB pixel stream to match the threshold stream.

You must set the number of lines parameter to a value that allows for the delay of both the bilateral
filter and the edge detector. The 9-by-9 bilateral filter has a delay of more than 4 lines, while the edge
detector has a delay of a bit more than 1 line. For safety, set the Maximum number of lines to 10
for now so that you can try different neighborhood sizes later. Once your design is done, you can
determine the actual number of lines of delay by observing the control signal waveforms.

Color Quantization

Color quantization reduces the number of colors in an image to make processing it easier. Color
quantization is primarily a clustering problem, because you want to find a single representative color
for a cluster of colors in the original image.

For this problem, you can apply many different clustering algorithms, such as k-means or the median
cut algorithm. Another common approach is using octrees, which recursively divide the color space
into 8 octants. Normally you set a maximum depth of the tree, which controls the recursive subtrees
that will be eliminated and therefore represented by one node in the subtree above.

These algorithms require that you know beforehand all of the colors in the original image. In pixel
streaming video, the color discovery step introduces an undesirable frame delay. Color quantization is
also generally best done in a perceptually uniform color space such as L*a*b. When you cluster colors
in RGB space, there is no guarantee that the result will look representative to a human viewer.

 Generate Cartoon Images Using Bilateral Filtering

2-79

The Quantize subsystem in this model uses a much simpler form of color quantization based on the
most significant 4 bits of each 8-bit color component. RGB triples with 8-bit components can
represent up to colors but no single image can use all those colors. Similarly when
you reduce the number of bits per color to 4, the image can contain up to colors. In
practice a 4-bit-per-color image typically contains only several hundred unique colors.

After shifting each color component to the right by 4 bits, the model shifts the result back to the left
by 4 bits to maintain the 24-bit RGB format supported by the video viewer. In an HDL system, the
next processing steps would pass on only the 4-bit color RGB triples.

open_system([modelname '/HDLAlgorithm/Quantize'],'force');

Overlay the Edges

A switch block overlays the edges on the original image by selecting either the RGB stream or an
RGB parameter. The switch is flipped based on the edge-detected binary image. Because cartooning
requires strong edges, the model does not use an alpha mixer.

Parameter Synchronization

In addition to the pixel and control signals, two parameters enter the HDLAlgorithm subsystem: the
gradient threshold and the line RGB triple for the overlay color. The FrameBoundary subsystem
provides run-time control of the threshold and the line color. However, to avoid an output frame with
a mix of colors or thresholds, the subsystem registers the parameters only at the start of each frame.

open_system([modelname '/HDLAlgorithm/FrameBoundary'],'force');

Simulation Results

After you run the simulation, you can see that the resulting images from the simulation show bold
lines around the detected features in the input video.

2 HDL-Optimized Algorithm Design

2-80

HDL Code Generation

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command.

makehdl('BilateralHDLExample/HDLAlgorithm')

To generate the test bench, use the following command. Note that test bench generation takes a long
time due to the large data size. Consider reducing the simulation time before generating the test
bench.

makehdltb('BilateralHDLExample/HDLAlgorithm')

The part of the model between the Frame to Pixels and Pixels to Frame blocks can be implemented on
an FPGA. The HDLAlgorithm subsystem includes all elements of the bilateral filter, edge detection,
and overlay.

Going Further

The bilateral filter in this example is configured to emphasize larger edges while blurring smaller
ones. To see the edge detection and overlay without bilateral filtering, right-click the Bilateral Filter
block and select Comment Through. Then rerun the simulation. The updated results show that many
smaller edges are detected and in general, the edges are much noisier.

This model has many parameters you can control, such as the bilateral filter standard deviations, the
neighborhood size, and the threshold value. The neighborhood size controls the minimum width of
emphasized edges. A smaller neighborhood results in more small edges being highlighted.

You can also control how the output looks by changing the RGB overlay color and the color
quantization. Changing the edge detection threshold controls the strength of edges that are overlaid.

To further cartoon the image, you can try adding multiple bilateral filters. With a the right
parameters, you can generate a very abstract image that is suitable for a variety of image
segmentation algorithms.

Conclusion

This model generated a cartoon image using bilateral filtering and gradient generation. The model
overlaid the cartoon lines on a version of the original RGB image that was quantized to a reduced
number of colors. This algorithm is suitable for FPGA implementation.

References

[1] Tomasi, C., and R. Manducji. "Bilateral filtering for gray and color images." Sixth International
Conference on Computer Vision, 1998.

 Generate Cartoon Images Using Bilateral Filtering

2-81

Pothole Detection
This example extends the “Generate Cartoon Images Using Bilateral Filtering” on page 2-77 example
to include calculating a centroid and overlaying a centroid marker and text label on detected
potholes.

Road hazard or pothole detection is an important part of any automated driving system. Previous
work [1] on automated pothole detection defined a pothole as an elliptical area in the road surface
that has a darker brightness level and different texture than the surrounding road surface. Detecting
potholes using image processing then becomes the task of finding regions in the image of the road
surface that fit the chosen criterion. You can use any or all of the elliptical shape, darker brightness
or texture criterion.

To measure the elliptical shape you can use a voting algorithm such as Hough circle, or a template
matching algorithm, or linear algebra-based methods such as a least squares fit. Measuring the
brightness level is simple in image processing by selecting a brightness segmentation value. The
texture can be assessed by calculating the spatial frequency in a region using techniques such as the
FFT.

This example uses brightness segmentation with an area metric so that smaller defects are not
detected. To find the center of the defect, this design calculates the centroid. The model overlays a
marker on the center of the defect and overlays a text label on the image.

Introduction

The PotHoleHDLDetector.slx system is shown below. The PotHoleHDL subsystem contains the pothole
detector and overlay algorithms and supports HDL code generation. There are four input parameters
that control the algorithm. The ProcessorBehavioral subsystem writes character maps into a RAM for
use as overlay labels.

modelname = 'PotHoleHDLDetector';
open_system(modelname);
set_param(modelname,'SampleTimeColors','on');
set_param(modelname,'SimulationCommand','Update');
set_param(modelname,'Open','on');
set(allchild(0),'Visible','off');

2 HDL-Optimized Algorithm Design

2-82

Overview of the FPGA Subsystem

The PotHoleHDL subsystem converts the RGB input video to intensity, then performs bilateral
filtering and edge detection. The TrapezoidalMask subsystem selects the roadway area. Then the
design applies a morphological close and calculates centroid coordinates for all potential potholes.
The detector selects the largest pothole in each frame and saves the center coordinates. The Pixel
Stream Aligner matches the timing of the coordinates with the input stream. Finally, the
Fiducial31x31 and the Overlay32x32 subsystems apply alpha channel overlays on the frame to add a
pothole center marker and a text label.

open_system([modelname '/PotHoleHDL'],'force');

Input Parameter Values

The subsystem has four input parameters that can change while the system is running.

The gradient intensity parameter, Gradient Threshold, controls the edge detection part of the
algorithm.

 Pothole Detection

2-83

The Cartoon RGB parameter changes the color of the overlays, that is, the fiducial marker and the
text.

The Area Threshold parameter sets the minimum number of marked pixels in the detection window in
order for it to be classified as a pothole. If this value is too low, then linear cracks and other defects
that are not road hazards will be detected. If it is too high then only the largest hazards will be
detected.

The final parameter, Show Raw, allows you to debug the system more easily. It toggles the displayed
image on which the overlays are drawn between the RGB input video and the binary image that the
detector sees. Set this parameter to 1 to see how the detector is working.

All of these parameters work best if changes are only allowed on video frame boundaries. The
FrameBoundary subsystem registers the parameters only on a valid start of frame.

open_system([modelname '/PotHoleHDL/FrameBoundary'],'force');

RGB to Intensity

The model splits the input RGB pixel stream so that a copy of the RGB stream continues toward the
overlay blocks. The first step for the detector is to convert from RGB to intensity. Since the input data
type for the RGB is uint8, the RGB to Intensity block automatically selects uint8 as the output data
type.

2 HDL-Optimized Algorithm Design

2-84

Bilateral Filter

The next step in the algorithm is to reduce high visual frequency noise and smaller road defects.
There are many ways this can be accomplished but using a bilateral filter has the advantage of
preserving edges while reducing the noise and smaller areas.

The Bilateral Filter block has parameters for the neighborhood size and two standard deviations, one
for the spatial part of the filter and one for the intensity part of the filter. For this application a
relatively large neighborhood of 9x9 works well. This model uses 3 and 0.75 for the standard
deviations. You can experiment with these values later.

Sobel Edge Detection

The filtered image is then sent to the Sobel edge-detection block which finds the edges in the image
and returns those edges that are stronger than the gradient threshold parameter. The output is a
binary image. In your final application, this threshold can be set based on variables such as road
conditions, weather, image brightness, etc. For this model, the threshold is an input parameter to the
PotHoleHDL subsystem.

Trapezoidal Mask

From the binary edge image, you need to remove any edges that are not relevant to pothole
detection. A good strategy is to use a mask that selects a polygonal region of interest and makes the
area outside of that black. The model does not use a normal ROI block since that would remove the
location context that you need later for the centroid calculation and labeling.

The order of operations also matters here because if you used the mask before edge detection, the
edges of the mask would become strong lines that would result in false positives at the detector.

In the input video, the area in which the vehicle might encounter a pothole is limited to the roadway
immediately in front of it and a trapezoidal section of roadway ahead. The exact coordinates depend
on the camera mounting and lens. This example uses fixed coordinates for left-side top, right-side top,
left-side bottom, and right-side bottom corners of the area. For this video, the top and bottom of the
trapezoidal area are not parallel so this is not a true trapezoid.

The mask consists of straight lines between the corners, connecting left,right and top,bottom.

 ltc---rtc
 / \
 / \
 / \
lbc-------------rbc

This example uses polyfit to determine a straight-line fit from corner to corner. For ease of
implementation, the design calls polyfit with the vertical direction as the independent variable.
This usage calculates x = f(y) instead of the more usual y = f(x). Using polyfit this way
allows you to use a y-direction line counter as the input address of a lookup table of x-coordinates of
the start (left) and end (right) of the area of interest on each line.

The lookup table is typically implemented in a BRAM in an FPGA, so it should be addressed with 0-
based addressing. The model converts from MATLAB 1-based addressing to 0-based addressing just
before the LUTs. To further reduce the size of the lookup table, the address is offset by the starting
line of the trapezoid. In order to get good synthesis results, match typical block RAM registering in
FPGAs by using a register after the lookup table. This register also adds some modest pipelining to
the design.

 Pothole Detection

2-85

For the 320x180 image:

raster = [320,180];
ltc = [155, 66];
lbc = [1,140];
rtc = [155, 66];
rbc = [285,179];

% fit to x = f(y) for convenient LUT indexing
abl = polyfit([lbc(2),ltc(2)],[lbc(1),ltc(1)],1); % left side
abr = polyfit([rbc(2),rtc(2)],[rbc(1),rtc(1)],1); % right side
leftxstart = max(1,round((ltc(2):rbc(2))*abl(1)+abl(2)));
rightxend = min(raster(1),round((ltc(2):rbc(2))*abr(1)+abr(2)));
startline = min(ltc(2),rtc(2));
endline = max(lbc(2),rbc(2));
% correct to zero-based addressing
leftxstart = leftxstart - 1;
rightxend = rightxend - 1;
startline = startline - 1;
endline = endline - 1;

open_system([modelname '/PotHoleHDL/TrapezoidalMask'],'force');

Morphological Closing

Next the design uses the Morphological Closing block to remove or close in small features. Closing
works by first doing dilation and then erosion, and helps to remove small features that are not likely
to be potholes. Specify a neighborhood on the block mask that determines how small or large a
feature you want to remove. This model uses a 5x5 neighborhood, similar to a disk, so that small
features are closed in.

Centroid

The centroid calculation finds the center of an active area. The design continuously computes the
centroid of the marked area in each 31x31 pixel region. It only stores the center coordinates when
the detected area is larger than an input parameter. This is a common difference between hardware

2 HDL-Optimized Algorithm Design

2-86

and software systems: when designing hardware for FPGAs it is often easier to compute continuously
but only store the answer when you need it, as opposed to calling functions as-needed in software.

For a centroid calculation, you need to compute three things from the region of the image: the
weighted sum of the pixels in the horizontal direction, the weighted sum in the vertical direction, and
the overall sum of all the pixels which corresponds to the area of the marked portion of the region.
The Line Buffer selects regions of 31x31 pixels, and returns them one column at a time. The
algorithm uses the column to compute vertical weights, and total weights. For the horizontal weights,
the design combines the columns to obtain a 31x31 kernel. You can choose the weights depending on
what you want "center" to mean. This example uses -15:15 so that the center of the 31x31 region is
(0,0) in the computed result.

The Vision HDL Toolbox blocks force the output data to zero when the output is not valid, as indicated
in the pixelcontrol bus output. While not strictly required, this behavior makes testing and debugging
much easier. To accomplish this behavior for the centroid results, the model uses Switch blocks with a
Constant block set to 0.

Since you want the center of the detected region to be relative to the overall image coordinate
system, add the horizontal and vertical pixel count to the calculated centroid.

open_system([modelname '/PotHoleHDL/Centroid31'],'force');

open_system([modelname '/PotHoleHDL/Centroid31/CentroidKernel'],'force');

 Pothole Detection

2-87

Detect and Hold

The detector operates on the total area sum from the centroid. The detector itself is very simple:
compare the centroid area value to the threshold parameter, and find the largest area that is larger
than the threshold. The model logic compares a stored area value to the current area value and
stores a new area when the input is larger than the currently stored value. By using > or >= you can
choose the earliest value over the threshold or the latest value over the threshold. The model stores
the latest value because later values are closer to the camera and vehicle. When the detector stores a
new winning area value, it also updates the X and Y centroid values that correspond to that area.
These coordinates are then passed to the alignment and overlay parts of the subsystem.

To pass the X, Y, and valid indication to the alignment algorithm, pack the values into one 23-bit word.
The model unpacks them once they are aligned in time with the input frames for overlay.

open_system([modelname '/PotHoleHDL/DetectAndHold'],'force');

2 HDL-Optimized Algorithm Design

2-88

Pixel Stream Aligner

The Pixel Stream Aligner block takes the streaming information from the detector and sends it and
the original RGB pixel stream to the overlay subsystems. The aligner compensates for the processing
delay added by all the previous parts of the detection algorithm, without having to know anything
about the latency of those blocks. If you later change a neighborhood size or add more processing,
the aligner can compensate. If the total delay exceeds the Maximum number of lines parameter of
the Pixel Stream Aligner block, adjust the parameter.

Fiducial Overlay

The fiducial marker is a square reticle represented as a 31-element array of 31-bit fixed-point
numbers. This representation is convenient because a single read returns the whole word of overlay
pixels for each line.

The diagram shows the overlay pattern by converting the fixed-point data to binary. This pattern can
be anything you wish within the 31x31 size in this design.

load fiducialROM31x31.mat
crosshair = bin(fiducialROM);
crosshair(crosshair=='0') = ' ' %change '0' to space for better display

crosshair =

 31x31 char array

 ' 1 '

 Pothole Detection

2-89

 ' 1 '
 ' 1 '
 ' 1 '
 ' 11111111111111111111111 '
 ' 1 1 1 '
 ' 1 1 1 '
 ' 1 1 1 '
 ' 1 1 1 '
 ' 1 1 1 '
 ' 1 1 1 '
 ' 1 1 1 '
 ' 1 1 '
 ' 1 1 '
 ' 1 1 '
 '111111111111 111111111111'
 ' 1 1 '
 ' 1 1 '
 ' 1 1 '
 ' 1 1 1 '
 ' 1 1 1 '
 ' 1 1 1 '
 ' 1 1 1 '
 ' 1 1 1 '
 ' 1 1 1 '
 ' 1 1 1 '
 ' 11111111111111111111111 '
 ' 1 '
 ' 1 '
 ' 1 '
 ' 1 '

The fiducial overlay subsystem has a horizontal and vertical counter with a set of four comparators
that uses the center of the detected area as the center of the region for the marker. The marker data
is used as a binary switch that turns on alpha channel overlay. The alpha value is a fixed transparency
parameter applied as a gain on the binary Detect signal when it is unpacked, in the ExpandData
subsystem.

open_system([modelname '/PotHoleHDL/Fiducial31x31'],'force');

2 HDL-Optimized Algorithm Design

2-90

Character Overlay

The character font ROM for the on-screen display stores data in a manner similar to the fiducial ROM
described above. Each 16-bit fixed-point number represents 16 consecutive horizontal pixels. The
character maps are 16x16.

Since the character data would typically be written by a CPU in ASCII, the simplest way is to store
the character data under 8-bit ASCII addresses in a dual-port RAM. The font ROM stores ASCII
characters 33 ("!") to 122 ("z"). The design offsets the address by 33.

The font ROM was constructed from a public domain fixed width font with a few edits to improve
readability. As in the fiducial marker, the character ROM data is used as a binary switch that turns on
alpha channel overlay. The character alpha value is a fixed transparency parameter applied as a gain
on the Detect signal when it is unpacked, in the ExpandData subsystem.

To visualize the character B in the font ROM, display it in binary.

load charROM16x16.mat
letterB = bin(charROM16x16(529:544)); % character array
letterB(letterB=='0')=' ' % remove '0' chars for better display

letterB =

 16x16 char array

 ' '
 ' 111111111 '
 ' 11111111111 '
 ' 111 111 '
 ' 111 111 '
 ' 111 111 '

 Pothole Detection

2-91

 ' 111 111 '
 ' 1111111111 '
 ' 111111111 '
 ' 111 111 '
 ' 111 111 '
 ' 111 111 '
 ' 111 111 '
 ' 111 1111 '
 ' 11111111111 '
 ' 111111111 '

open_system([modelname '/PotHoleHDL/Overlay32x32'],'force');

Viewing Detector Raw Image

When you work with a complicated algorithm, viewing intermediate steps in the processing can be
very helpful for debugging and exploration. In this model, you can set the boolean Show Raw
parameter to 1 (true) to display the result of morphological closing of the binary image, with the
overlay of the detected results. To convert the binary image for use with the 8-bit RGB overlay, the
model multiplies the binary value by 255 and uses that value on all three color channels.

HDL Code Generation

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command.

makehdl('PotHoleHDLDetector/PotHoleHDL')

2 HDL-Optimized Algorithm Design

2-92

To generate the test bench, use the following command. Note that test bench generation takes a long
time due to the large data size. You may want to reduce the simulation time before generating the
test bench.

makehdltb('PotHoleHDLDetector/PotHoleHDL')

The part of this model that you can implement on an FPGA is the part between the Frame To Pixels
and Pixels To Frame blocks. That is the subsystem called PotHoleHDL, which includes all the
elements of the detector.

Simulation in an HDL Simulator

Now that you have HDL code, you can simulate it in your HDL Simulator. The automatically
generated test bench allows you to prove that the Simulink simulation and the HDL simulation match.

Synthesis for an FPGA

You can also synthesize the generated HDL code in an FPGA synthesis tool, such as Xilinx Vivado. In a
Virtex-7 FPGA (xc7v585tffg1157-1), the design achieves a clock rate of over 150 MHz.

The utilization report shows that the bilateral filter, pixel stream aligner, and centroid functions
consume most of the resources in this design. The bilateral filter requires the most DSPs. The
centroid implementation is quite efficient and uses only two DSPs. Centroid calculation also requires
a reciprocal lookup table and so uses a large number of LUTs as memory.

Going Further

This example shows one possible implementation of an algorithm for detecting potholes. This design
could be extended in the following ways :

• The gradient threshold could be computed from the average brightness using a gray-world model.
• The trapezoidal mask block could be made "steerable" by looking at the vehicle wheel position and

adjusting the linear fit for the sloping sides of the mask.
• The detector could be made more robust by looking at the average brightness of the RGB or

intensity image relative to the surrounding pavement since potholes are typically darker in
intensity than the surrounding area.

• The visual frequency spectrogram of the pothole could also be used to look for specific types of
surfaces in potholes.

• The detection area threshold value could be computed using average intensity in the trapezoidal
roadway region.

 Pothole Detection

2-93

• Multiple potholes could be detected in one frame by storing the top N responses rather than only
the maximum detected response. The fiducial marker subsystem would need to be redesigned
slightly to allow for overlapping markers.

Conclusion

This model shows how a pothole detection algorithm can be implemented in an FPGA. Many useful
parts of this detector can be reused in other applications, such as the centroid block and the fiducial
and character overlay blocks.

References

[1] Koch, Christian, and Ioannis Brilakis. "Pothole detection in asphalt pavement images." Advanced
Engineering Informatics 25, no. 3 (2011): 507-15. doi:10.1016/j.aei.2011.01.002.

[2] Omanovic, Samir, Emir Buza, and Alvin Huseinovic. "Pothole Detection with Image Processing and
Spectral Clustering." 2nd International Conference on Information Technology and Computer
Networks (ICTN '13), Antalya, Turkey. October 2013.

2 HDL-Optimized Algorithm Design

2-94

Buffer Bursty Data Using Pixel Stream FIFO Block
This example shows how to interface with bursty pixel streams, such as those from DMA and Camera
Link® sources, using the Pixel Stream FIFO block.

Overview

The DMACameraSourceHDL.slx system is shown below.

There are two pixel input streams - DMA source and Camera Link source. Input data for both sources
is loaded from a .mat file, in the InitFcn callback. The DMA source models a non-contiguous
stream of data arriving from off-chip memory. The pixels arrive in short bursts of random length, with
random gaps between bursts. This can occur when there is contention on the DMA source and so it is
not possible to stream pixels continuously from off-chip memory. The Camera Link source models the
case when the camera is streaming an image of a lower resolution than the maximum permitted by
the pixel clock and therefore will leave regular gaps between valid pixels. This spacing allows for
streaming of multiple resolution images using a common clock, via strobing of validIn.

The Camera Link source models the incoming video stream from the sensor. The DMA source models
a video stream from a frame buffer in which previous frame data has been processed in order to
produce an alpha channel, allowing for blending of previous frame data with the current stream.

The Pixel Stream Overlay subsystem is shown in the diagram below. You can generate HDL code
from this subsystem.

 Buffer Bursty Data Using Pixel Stream FIFO Block

2-95

There are four main processing stages in the model - buffering of input data to remove burstiness,
edge detection and overlay on Camera Link stream, alignment of pixel streams, and alpha blending of
DMA stream onto Camera Link stream.

Pixel Stream Buffering

The Pixel Stream FIFO blocks buffer the input data as it is streamed into the model. The Pixel Stream
FIFO is a masked subsystem. Looking into the Pixel Stream FIFO, we can see that it consists of a
Memory Controller, Read and Write counters and two RAMs. One RAM stores the incoming pixel
stream, and the other stores the incoming control signal stream. Once a full line has been buffered in
RAM, the line is output continuously, removing any bursty behavior seen at input.

This waveform illustrates the difference in the pixel control signals after the Pixel Stream FIFO. The
input valid signal, DMA_ControlIn(5), shows short bursts of valid pixels, while the output valid,
DMA_ctrlClean(5), shows a continuous line of valid pixels. The total cycles in each line, shown by
the time between hStart assertions, remains the same.

Edge Detection and Overlay on Camera Link Stream

To further differentiate the pixel streams, the Camera Link stream has an edge detection and overlay
section. The pixel stream is first pre-processed by the Bilateral Filter block. This block smooths the
image while preserving edges, and so it is a good choice for noise suppression prior to edge
detection. The Edge Detector block detects edges using the Sobel method. The edges are then
thinned using a [2x2] erosion operation. The thinned edge image is overlaid onto the original Camera
Link image.

2 HDL-Optimized Algorithm Design

2-96

Pixel Stream Alignment

The Camera Link and DMA pixel streams must now be aligned to account for algorithmic delay in the
data path. Aligning the pixel streams is straightforward using the Pixel Stream Aligner block.

Alpha Blending

The DMA input stream is a [1x4] vector whereas the Camera Link input is a [1x3] vector. The extra
column in the DMA input is used to store the alpha channel information. The alpha channel
represents the amount by which each of the pixels from the DMA source should be blended with the
incoming Camera Link stream.

Results of the Simulation

The output video stream shows the DMA stream alpha blended onto the Camera Link input. The
magenta colored overlay indicates the edges detected in the incoming Camera Link stream.

 Buffer Bursty Data Using Pixel Stream FIFO Block

2-97

Generate HDL Code and Verify Its Behavior

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command:

makehdl('DMACameraSourceHDL/Pixel Stream Overlay');

To generate an HDL test bench, use the following command:

makehdltb('DMACameraSourceHDL/Pixel Stream Overlay');

2 HDL-Optimized Algorithm Design

2-98

Using the Line Buffer to Create Efficient Separable Filters
This example shows how to design and implement a separable image filter, which uses fewer
hardware resources than a traditional 2-D image filter.

Traditional image filters operate on a region of pixels and compute the resulting value of one central
pixel using a two-dimensional filter kernel which is a matrix that represents the coefficients of the
filter. Each coefficient is multiplied with its corresponding pixel and the result is summed to form the
value. The region is then moved by one pixel and the next value is computed.

A separable filter is simple in concept: if the two-dimensional filter kernel can be factored into a
horizontal component and a vertical component, then each direction can be computed separately
using one-dimensional filters. This factorization can only be done for certain types of filter kernels.
These kernels are called separable since the parts can be separated. Deciding which kernels are
separable and which are not is easy using linear algebra in MATLAB. Mathematically, the two 1-D
filters convolve to equal the original 2-D filter kernel, but a separable filter implementation often
saves hardware resources.

Introduction

The SeparableFilterHDL.slx system is shown below. The SeptFiltHDL subsystem contains the
separable filter, and also an Image Filter block implementation of the equivalent 2-D kernel as a
reference.

modelname = 'SeparableFilterHDL';
open_system(modelname);
set_param(modelname,'SampleTimeColors','on');
set_param(modelname,'SimulationCommand','Update');
set_param(modelname,'Open','on');
set(allchild(0),'Visible','off');

 Using the Line Buffer to Create Efficient Separable Filters

2-99

Determine Separable Filter Coefficients

Start by deciding what the purpose of your filter will be and compute the kernel. This example uses a
Gaussian filter of size 5x5 with a standard deviation of 0.75. This filter has a blurring effect on images
and is often used to remove noise and small details before other filtering operations, such as edge
detection. Notice that the Gaussian filter kernel is circularly symmetric about the center.

Hg = fspecial('gaussian',[5,5],0.75)

Hg =

 0.0002 0.0033 0.0081 0.0033 0.0002
 0.0033 0.0479 0.1164 0.0479 0.0033
 0.0081 0.1164 0.2831 0.1164 0.0081
 0.0033 0.0479 0.1164 0.0479 0.0033
 0.0002 0.0033 0.0081 0.0033 0.0002

To check if the kernel is separable, compute its rank, which is an estimate of the number of linearly
independent rows or columns in the kernel. If rank returns 1, then the rows and columns are related
linearly and the kernel can be separated into its horizontal and vertical components.

rankHg = rank(Hg)

rankHg =

 1

To separate the kernel, use the svd function to perform singular value decomposition. The svd
function returns three matrices, [U,S,V], such that U*S*V' returns the original kernel, Hg. Since
the kernel is rank 1, S contains only one non-zero element. The components of the separated filter are
the first column of each of U and V, and the singular value split between the two vectors. To split the
singular value, multiply both vectors with the square root of S. You must reshape V so that Hh is a
horizontal, or row, vector.

For more information on filter separability, refer to the links at the bottom of this example.

[U,S,V]=svd(Hg)
Hv=abs(U(:,1)*sqrt(S(1,1)))
Hh=abs(V(:,1)'*sqrt(S(1,1)))

U =

 -0.0247 -0.9912 -0.1110 0.0673 -0.0000
 -0.3552 0.0737 -0.6054 -0.0431 0.7071
 -0.8640 -0.0301 0.4988 0.0619 -0.0000
 -0.3552 0.0737 -0.6054 -0.0431 -0.7071
 -0.0247 -0.0754 0.0761 -0.9939 0.0000

S =

 0.3793 0 0 0 0
 0 0.0000 0 0 0

2 HDL-Optimized Algorithm Design

2-100

 0 0 0.0000 0 0
 0 0 0 0.0000 0
 0 0 0 0 0.0000

V =

 -0.0247 0.1742 0.8521 -0.4929 0
 -0.3552 0.5980 -0.0716 0.1053 0.7071
 -0.8640 -0.4937 0.0199 -0.0968 0.0000
 -0.3552 0.5980 -0.0716 0.1053 -0.7071
 -0.0247 -0.1031 0.5131 0.8518 -0.0000

Hv =

 0.0152
 0.2188
 0.5321
 0.2188
 0.0152

Hh =

 0.0152 0.2188 0.5321 0.2188 0.0152

You can check your work by reconstructing the original kernel from these factored parts and see if
they are the same to within floating-point precision. Compute the check kernel, Hc, and compare it to
the original Hg using a tolerance.

Hc = Hv * Hh;
equalTest = all(Hc(:)-Hg(:) < 5*max(eps(Hg(:))))

equalTest =

 logical

 1

This result proves that Hv and Hh can be used to recreate the original filter kernel.

Fixed-Point Settings

For HDL code generation, you must set the filter coefficients to fixed-point data types. When picking
fixed-point types, you must consider what happens to separability when you quantize the kernel.

First, quantize the entire kernel to a nominal data type. This example uses a 10-bit fixed-point
number. Let the fixed-point tools select the best fraction length to represent the kernel values. Do the
same conversion for the horizontal and vertical component vectors.

Hgfi = fi(Hg,0,10);
Hvfi = fi(Hv,0,10);
Hhfi = fi(Hh,0,10);

 Using the Line Buffer to Create Efficient Separable Filters

2-101

In this case, the best-precision 10-bit answer for Hg has 11 fractional bits, while Hv and Hh use only
10 fractional bits. This result makes sense since Hv and Hh are multiplied and added together to
make the original kernel.

Now you must check if the quantized kernel is still rank 1. Since the rank and svd functions do not
accept fixed-point types, you must convert back to doubles. This operation does not quantize the
results, as long as the fixed-point type is smaller than 53 bits, which is the effective mantissa size of
doubles.

rankDouble = rank(double(Hgfi))

rankDouble =

 3

This result shows that quantization can have a dramatic effect on the separability: since the rank is
no longer 1, the quantized filter does not seem to be separable. For this particular filter kernel, you
could experiment with the quantized word-length and discover that 51 bits of precision are needed in
order for the rank function to return 1 after quantization. Actually, this result is overly conservative
because of quantization of near-zero values within the rank function.

Instead of expanding the fixed-point type to 51 bits, add a tolerance argument to the rank function to
limit the quantization effects.

rankDouble2048 = rank(double(Hgfi),1/2048)

rankDouble2048 =

 1

This result shows that the quantized kernel is rank 1 within an 11-bit fractional tolerance. So, the 11-
bit separated coefficients are acceptable after all.

Another quantization concern is whether the fixed-point filter maintains flat field brightness. The
filter coefficients must sum to 1.0 to maintain brightness levels. For a normalized Gaussian filter such
as this example, the coefficient sum is always 1.0, but this sum can be moved away from 1.0 by fixed-
point quantization. It can be critical in video and image processing to maintain exactly 1.0, depending
on the application. If you imagine a chain of filters, each one of which raises the average level by
around 1%, then the cumulative error can be large.

sumHg = sum(Hg(:))
sumHgfi = sum(Hgfi(:))

sumHg =

 1.0000

sumHgfi =

 1

2 HDL-Optimized Algorithm Design

2-102

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 15
 FractionLength: 11

In this case, the sums of the double-precision Hg and the fixed-point Hgfi are indeed 1.0. If
maintaining brightness levels to absolute limits is important in your application, then you might have
to manually adjust the filter coefficient values to maintain a sum of 1.

Finally, check that the combination of the quantized component filters still compares to the quantized
kernel. By default, the fi function uses full precision on the arithmetic expression. Use convergent
rounding since there are some coefficient values very near the rounding limit.

Hcfi = fi(Hvfi * Hhfi,0,10,'fimath',fimath('RoundingMethod','Convergent'));
equalTest = all(Hcfi(:)==Hgfi(:))

equalTest =

 logical

 1

This result confirms that the fixed-point, separated coefficients achieve the same filter as the 2-D
Gaussian kernel.

Implementing the Separable Filter

To see the separable filter implementation, open the Separable Filter subsystem that is inside the
SepFiltHDL subsystem.

open_system([modelname '/SepFiltHDL/Separable Filter'],'force');

This subsystem selects vertical and horizontal vectors of pixels for filtering, and performs the filter
operation.

The Line Buffer outputs a column of pixels for every time step of the filter. The Line Buffer also pads
the edges of the image. This model uses Padding method: Constant, with a value of 0. The
shiftEnable output signal is normally used to control a horizontal shift register to compile a 2-D pixel
kernel. However, for a separable filter, you want to work in each direction separately. This model uses
the output pixel column for the vertical filter, and uses the shiftEnable signal later to construct the
horizontal pixel vector.

The separated horizontal and vertical filters are symmetric, so the model uses a pre-adder to reduce
the number of multipliers even further. After the adder, a Gain block multiplies the column of pixels
by the Hv vector. The Gain parameter is set to Hv and the parameter data type is fixdt(0,10). The
resulting output type in full-precision is ufix18_En10. Then a Sum block completes the vertical

 Using the Line Buffer to Create Efficient Separable Filters

2-103

filter. The Sum block is configured in full-precision mode. The output is a scalar of ufix21_En10
type.

There are many pipelining options you could choose, but since this design is simple, manual
pipelining is quick and easy. Adding delays of 2 cycles before and after the Gain multipliers ensures
good speed when synthesized for an FPGA. A delay of 3 cycles after the Sum allows for it to be
sufficiently pipelined as well. The model balances these delays on the pixelcontrol bus and the
shiftEnable signal before going to the horizontal dimension filter.

The best way to create a kernel-width shift register is to use a Tapped Delay block, which shifts in a
scalar and outputs the register values as a vector. For good HDL synthesis results, use the Tapped
Delay block inside an enabled subsystem, with the Synchronous marker block.

The output of the Tapped Delay subsystem is a vector of 5 horizontal pixels ready for the horizontal
component of the separable filter. The model implements a similar symmetric pre-add and Gain block,
this time with Hh as the parameter. Then, a Sum block and similar pipelining complete the horizontal
filter. The final filtered pixel value is in the full-precision data type ufix34_En20.

Many times in image processing you would like to do full-precision or at least high-precision
arithmetic operations, but then return to the original pixel input data type for the output. This
subsystem returns to the original pixel type by using a Data Type Conversion block set to uint8, with
Nearest rounding and saturation.

The Vision HDL Toolbox blocks force the output data to zero when the output is not valid, as indicated
in the pixelcontrol bus output. While not strictly required, this behavior makes testing and debugging
much easier. To accomplish this behavior, the model uses a Switch block with a Constant block set to
0.

Resource Comparison

The separable 5x5 filter implementation uses 3 multipliers in the vertical direction and 3 multipliers
in the horizontal direction, for a total of 6 multipliers. A traditional image filter usually requires 25
multipliers for a 5x5 kernel. However, the Image Filter block takes advantage of any symmetry in the
kernel. In this example the kernel has 8-way and 4-way symmetry, so the Image Filter only uses 5
multipliers. In general there are savings in multipliers when implementing a separable filter, but in
this case the 2-D implementation is similar.

The separable filter uses 4 two-input adders in each direction, 2 for the pre-add plus 2 in the Sum, for
a total of 8. The Image Filter requires 14 adders total, with 10 pre-add adders and 4 final adders. So
there is a substantial saving in adders.

The Image Filter requires 25 registers for the shift register, while the separable filter uses only 5
registers for the shift register. Each adder also requires a pipeline register so that is 8 for the
separable case and 14 for the traditional case. The number of multiplier pipeline registers scales
depending on the number of multipliers.

The separable filter uses fewer adders and registers than the 2-D filter. The number of multipliers is
similar between the two filters only because the 2-D implementation optimizes the symmetric
coefficients.

Results of the Simulation

The resulting images from the simulation of the separable filter and the reference Image Filter are
very similar. Using the fixed-point settings in this example, the difference between the separable filter

2 HDL-Optimized Algorithm Design

2-104

and the reference filter never exceeds one bit. This difference is a 0.1% difference or greater than 54
dB PSNR between the filtered images overall.

HDL Code Generation

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command.

makehdl('SeparableFilterHDL/SepFiltHDL')

To generate the test bench, use the following command. Note that test bench generation takes a long
time due to the large data size. Reduce the simulation time before generating the test bench.

makehdltb('SeparableFilterHDL/SepFiltHDL')

The part of this model that you can implement on an FPGA is the part between the Frame To Pixels
and Pixels To Frame blocks. The SepFiltHDL subsystem includes both the separable algorithm and
the traditional 2-D implementation for comparison purposes.

Simulation in an HDL Simulator

Now that you have HDL code, you can simulate it in your HDL simulator. The automatically generated
test bench allows you to prove that the Simulink simulation and the HDL simulation match.

Synthesis for an FPGA

You can also synthesize the generated HDL code in an FPGA synthesis tool, such as Xilinx Vivado. In a
Virtex-7 FPGA (xc7v585tffg1157-1), the filter design achieves a clock rate of over 250 MHz.

The utilization report shows that the separable filter uses fewer resources than the traditional image
filter. The difference in resource use is small due to the symmetry optimizations applied by the Image
Filter block.

Going Further

The filter in this example is configured for Gaussian filtering but other types of filters are also
separable, including some that are very useful. The mean filter, which has a kernel with coefficients
that are all 1/N, is always separable.

Hm = ones(3)./9
rank(Hm)

Hm =

 Using the Line Buffer to Create Efficient Separable Filters

2-105

 0.1111 0.1111 0.1111
 0.1111 0.1111 0.1111
 0.1111 0.1111 0.1111

ans =

 1

Or the Sobel edge-detection kernel:

Hs = [1 0 -1; 2 0 -2; 1 0 -1]
rank(Hs)

Hs =

 1 0 -1
 2 0 -2
 1 0 -1

ans =

 1

Or gradient kernels like this:

Hgrad = [1 2 3; 2 4 6; 3 6 9]
rank(Hgrad)

Hgrad =

 1 2 3
 2 4 6
 3 6 9

ans =

 1

Separability can also be applied to filters that do not use multiply-add, such as morphological filters
where the operator is min or max.

Conclusion

You have used linear algebra to determine if a filter kernel is separable or not, and if it is, you learned
how to separate the components using the svd function.

You explored the effects of fixed-point quantization and learned that it is important to work with
precise values when calculating rank and singular values. You also learned about the importance of
maintaining DC gain. Finally you learned why separable filters can be implemented more efficiently
and how to calculate the savings.

2 HDL-Optimized Algorithm Design

2-106

References

[1] Eddins, S. "Separable convolution". Steve on Image Processing (October 4, 2006).

[2] Eddins, S. "Separable convolution: Part 2". Steve on Image Processing (November 28, 2006).

 Using the Line Buffer to Create Efficient Separable Filters

2-107

https://blogs.mathworks.com/steve/2006/10/04/separable-convolution/
https://blogs.mathworks.com/steve/2006/11/28/separable-convolution-part-2/

Image Pyramid
This example shows how to generate multi-level image pyramid pixel streams from an input stream.
This model derives multiple pixel streams by downsampling the original image in both the horizontal
and vertical directions, using Gaussian filtering. This type of filter avoids aliasing artifacts. The
implementation uses an architecture suitable for FPGAs.

Image pyramid is used in many image processing applications such as image compression, object
detection and recognition using techniques such as convolutional neural network (CNN) or aggregate
channel features (ACF). Image pyramid is also similar to scale-space representation.

The example model takes a 240p video input and produces three output streams: 160x120, 80x60,
and 40x30.

modelname = 'ImagePyramidHDL';
open_system(modelname);
set_param(modelname,'SampleTimeColors','on');
set_param(modelname,'SimulationCommand','Update');
set_param(modelname,'Open','on');
set(allchild(0),'Visible','off');

Each level of the pyramid contains a Line Buffer block and a downsampling filter.

open_system([modelname '/ImagePyramidTop/ResamplingPyramidFilter'],'force');

2 HDL-Optimized Algorithm Design

2-108

Filter Coefficients

The approximate Gaussian filter coefficients in [1] have been used in a number of image pyramid
implementations. These coefficients are given by:

format long
Hh = [1 4 6 4 1]./16;
Hv = Hh';
Hg = Hv*Hh

Hg =

 Columns 1 through 3

 0.003906250000000 0.015625000000000 0.023437500000000
 0.015625000000000 0.062500000000000 0.093750000000000
 0.023437500000000 0.093750000000000 0.140625000000000
 0.015625000000000 0.062500000000000 0.093750000000000
 0.003906250000000 0.015625000000000 0.023437500000000

 Columns 4 through 5

 0.015625000000000 0.003906250000000
 0.062500000000000 0.015625000000000
 0.093750000000000 0.023437500000000
 0.062500000000000 0.015625000000000
 0.015625000000000 0.003906250000000

The results are similar to but not exactly the same as the Gaussian kernel with a 1.0817797 standard-
deviation. So, Hg is an approximate Gaussian kernel.

Hf = fspecial('gaussian',5,1.0817797)

Hf =

 Columns 1 through 3

 0.004609023214619 0.016606534868404 0.025458671096979
 0.016606534868404 0.059834153028525 0.091728830511040

 Image Pyramid

2-109

 0.025458671096979 0.091728830511040 0.140625009648116
 0.016606534868404 0.059834153028525 0.091728830511040
 0.004609023214619 0.016606534868404 0.025458671096979

 Columns 4 through 5

 0.016606534868404 0.004609023214619
 0.059834153028525 0.016606534868404
 0.091728830511040 0.025458671096979
 0.059834153028525 0.016606534868404
 0.016606534868404 0.004609023214619

The filter, Hg, is obviously separable, since it was constructed from horizontal and vertical vectors.
Therefore, a separable filter implementation is a good choice. Many of the coefficient values are
powers of two or a combination of only two powers of two. These values mean that the filter
implementation can replace multiplication with shift and add techniques such as canonical signed
digit (CSD). Each vector in the separable representation is also symmetric, so the filter
implementation uses a symmetry pre-adder to further reduce the number of operations.

Downsampling

After low-pass filtering with the approximate Gaussian filter above, the model then downsamples the
pixel stream by two in both the horizontal and vertical directions. This is primarily accomplished by
alternating the valid signal every other pixel. The model also recreates the other pixelcontrol bus
signals.

The model includes horizontal and vertical counters that compare the number of output pixels and
lines with the mask parameters for active pixels and lines. The model uses these counts to recreate
the end of line (hEnd) and end of frame (vEnd) signals.

After downsampling once, the pixelcontrol bus valid signal alternates high and then low every
other pixel. After the second downsample, it alternates with a pattern of one valid pixel followed by
three non-valid pixels. In some applications, you may want to collect all the valid pixels into a
continuously valid period of time. The Pixel Stream FIFO block, used between downsample stages,
produces continuous valid pixels for each line.

Each ResamplingPyramidFilter subsystem accepts parameters for the output frame size. These
numbers must be integers, and a factor of two smaller than the input image. If the input number of
pixels per line is odd rather than even, then round down to the next integer. For example, if the input
size is 25 pixels per line, the requested output size must be 12 pixels per line.

Going Further

The Gaussian filter kernel used in traditional image pyramid is not the only low-pass filter that could
be used. Using an edge-preserving low-pass filter, such as a bilateral filter, with different kernel sizes,
would preserve more detail in the pyramid.

It is sometimes helpful to compute the difference between two levels of an image pyramid. This
algorithm is called a Laplacian pyramid. The smaller level is upsampled to same size as the larger
level, and filtered. The filter is usually a scaled version of the same approximate Gaussian filter used
in this model. The difference between layers represents the information lost in the downsampling
process. A Laplacian pyramid can be used for applications including coring for noise removal,
compositing images taken at different times or with different focal lengths, and many others.

2 HDL-Optimized Algorithm Design

2-110

A potential limitation of this model is that there is fairly high latency between the output streams.
This latency occurs because the second and third levels depend on the output from the previous level.
This could be avoided by creating parallel filters operating on more lines. This example implements a
5-by-5 filter that stores 5 lines at each level. A lower latency parallel implementation requires 13 lines
of storage for a two-level filter or 103 lines for a three-level filter. This is not generally a cost-effective
trade-off.

On FPGAs, line buffer memories are typically implemented using block RAMs. Smaller memories can
be implemented in the FPGA fabric, and are known as distributed RAMs. Your synthesis tool chooses
block or distributed RAM depending on the resources of your device. As the line size becomes smaller
due to downsampling, distributed RAMs can be more efficient. In this example, the Line Buffer blocks
in each level reserve space for up to 2k pixels per line. This size is the default size for the Line Buffer,
and accommodates up to 1080p format video. To target distributed RAMs, specify a small power of
two for the Line buffer size parameter. In this example, you could set the line buffer sizes of the
three levels to 256, 128, and 64.

References
[1] Burt, P., and E. Adelson. "The Laplacian Pyramid as a Compact Image Code."IEEE Transactions on

Communications 31, no. 4 (April 1983): 532-40.

 Image Pyramid

2-111

Stereo Disparity Using Semi-Global Block Matching
This example shows how to compute disparity between left and right stereo camera images using the
Semi-Global Block Matching algorithm. This algorithm is suitable for implementation on an FPGA.

Distance estimation is an important measurement for applications in Automated Driving and
Robotics. A cost-effective way of performing distance estimation is by using stereo camera vision.
With a stereo camera, depth can be inferred from point correspondences using triangulation. Depth
at any given point can be computed if the disparity at that point is known. Disparity measures the
displacement of a point between two images. The higher the disparity, the closer the object.

This example computes disparity using the Semi-Global Block Matching (SGBM) method, similar to
the disparity (Computer Vision Toolbox) function. The SGBM method is an intensity-based
approach and generates a dense and smooth disparity map for good 3D reconstruction. However, it is
highly compute-intensive and requires hardware acceleration using FPGAs or GPUs to obtain real-
time performance.

The example model presented here is FPGA-hardware compatible, and can therefore provide real-
time performance.

Introduction

Disparity estimation algorithms fall into two broad categories: local methods and global methods.
Local methods evaluate one pixel at a time, considering only neighboring pixels. Global methods
consider information that is available in the whole image. Local methods are poor at detecting sudden
depth variation and occlusions, and hence global methods are preferred. Semi-global matching uses
information from neighboring pixels in multiple directions to calculate the disparity of a pixel.
Analysis in multiple directions results in a lot of computation. Instead of using the whole image, the
disparity of a pixel can be calculated by considering a smaller block of pixels for ease of computation.
Thus, the Semi-Global Block Matching (SGBM) algorithm uses block-based cost matching that is
smoothed by path-wise information from multiple directions.

Using the block-based approach, this algorithm estimates approximate disparity of a pixel in the left
image from the same pixel in the right image. More information about Stereo Vision is available here.
Before going into the algorithm and implementation details, two important parameters need to be
understood: Disparity Levels and Number of Directions.

Disparity Levels: Disparity levels is a parameter used to define the search space for matching. As
shown in figure below, the algorithm searches for each pixel in the Left Image from among D pixels in
the Right Image. The D values generated are D disparity levels for a pixel in Left Image. The first D
columns of Left Image are unused because the corresponding pixels in Right Image are not available
for comparison. In the figure, w represents the width of the image and h is the height of the image.
For a given image resolution, increasing the disparity level reduces the minimum distance to detect
depth. Increasing the disparity level also increases the computation load of the algorithm. At a given
disparity level, increasing the image resolution increases the minimum distance to detect depth.
Increasing the image resolution also increases the accuracy of depth estimation. The number of
disparity levels are proportional to the input image resolution for detection of objects at the same
depth. This example supports disparity levels from 8 to 128 (both values inclusive). The explanation
of the algorithm refers to 64 disparity levels. The models provided in this example can accept
input images of any resolution.

2 HDL-Optimized Algorithm Design

2-112

https://www.mathworks.com/discovery/stereo-vision.html

Number of Directions: In the SGBM algorithm, to optimize the cost function, the input image is
considered from multiple directions. In general, accuracy of disparity result improves with increase in
number of directions. This example analyzes five directions: left-to-right (A1), top-left-to-bottom-right
(A2), top-to-bottom (A3), top-right-to-bottom-left (A4), and right-to-left (A5).

SGBM Algorithm

The SGBM algorithm takes a pair of rectified left and right images as input. The pixel data from the
raw images may not have identical vertical coordinates because of slight variations in camera
positions. Images need to be rectified before performing stereo matching to make all epi-polar lines
parallel to the horizontal axis and match vertical coordinates of each corresponding pixel. For more
details on rectification, please see rectifyStereoImages (Computer Vision Toolbox) function. The
figure shows a block diagram of the SGBM algorithm, using five directions.

The SGBM algorithm implementation has three major modules: Matching Cost Calculation,
Directional Cost Calculation and Post-processing.

 Stereo Disparity Using Semi-Global Block Matching

2-113

Many methods have been explored in the literature for computing matching cost. This example
implementation uses the census transform as explained in [2]. This module can be divided into two
steps: Center-Symmetric Census Transform (CSCT) of left and right images and Hamming Distance
computation. First, the model computes the CSCT on each of the left and right images using a sliding
window. For a given pixel, a 9-by-7 pixel window is considered around it. CSCT for the center pixel in
that window is estimated by comparing the value of each pixel with its corresponding center-
symmetric counterpart in the window. If the pixel value is larger than its corresponding center-
symmetric pixel, the result is 1, otherwise the result is 0. The figure shows an example 9-by-7 window.
The center pixel number is 31. The 0th pixel is compared to the 62nd pixel (blue), the 1st pixel is
compared to the 61st pixel (red), and so on, to generate 31 results. Each result a single bit output and
the result of the whole window is arranged as a 31-bit number. This 31-bit number is the CSCT output
for each pixel in both images.

In the Hamming Distance module, the CSCT outputs of the left and right images are pixel-wise XOR'd
and set bits are counted to generate the matching cost for each disparity level. To generate D
disparity levels, D pixel-wise Hamming distance computation blocks are used. The matching cost for
D disparity levels at a given pixel position, p, in the left image is computed by computing the
Hamming distance with (p to D+p) pixel positions in the right image. The matching cost, C(p,d), is
computed at each pixel position, p, for each disparity level, d. The matching cost is not computed for
pixel positions corresponding to the first D columns of the left image.

The second module of SGBM algorithm is directional cost estimation. In general, due to noise, the
matching cost result is ambiguous and some wrong matches could have lower cost than correct ones.
Therefore additional constraints are required to increase smoothness by penalizing changes of
neighboring disparities. This constraint is realized by aggregating 1-D minimum cost paths from
multiple directions. It is represented by aggregated cost from r directions at each pixel position,
S(p,d), as given by

The 1-D minimum cost path for a given direction, L_r(p,d), is computed as shown in the equation.

2 HDL-Optimized Algorithm Design

2-114

As mentioned earlier, this example uses five directions for disparity computation. Propagation in each
direction is independent. The resulting disparities at each level from each direction are aggregated
for each pixel. Total cost is the sum of the cost calculated for each direction.

The third module of SGBM algorithm is Post-processing. This module has three steps: minimum cost
index calculation, interpolation, and a uniqueness function. Minimum cost index calculation finds the
index corresponding to the minimum cost for a given pixel. Sub-pixel quadratic interpolation is
applied on the index to resolve disparities at the sub-pixel level. The uniqueness function ensures
reliability of the computed minimum disparity. A higher value of the uniqueness threshold marks
more disparities unreliable. As a last step, the negative disparity values are invalidated and replaced
with -1.

HDL Implementation

The figure below shows the overview of the example model. The blocks leftImage and rightImage
import a stereo image pair as input to the algorithm. In the Input subsystem, the Frame To Pixels
block converts input images from the leftImage and rightImage blocks to a pixel stream and
accompanying control signals in a pixelcontrol bus. The pixel stream is passed as input to the
SGBMHDLAlgorithm subsystem which contains three computation modules described above:
matching cost calculation, directional cost calculation, and post-processing. The output of the
SGBMHDLAlgorithm subsystem is a disparity value pixel stream. In the Output subsystem, the Pixels
To Frame block converts the output to a matrix disparity map. The disparity map is displayed using
the Video Viewer block.

modelname = 'SGBMDisparityExample';
open_system(modelname);
set_param(modelname,'SampleTimeColors','off');
set_param(modelname,'Open','on');
set_param(modelname,'SimulationCommand','Update');
set(allchild(0),'Visible','off');

 Stereo Disparity Using Semi-Global Block Matching

2-115

Matching Cost Calculation

The matching cost calculation is again separated into two parts: CSCT computation and Hamming
distance calculation. CSCT is calculated on each 9-by-7 pixel window by aligning each group of pixels
for comparison using Tapped Delay (Simulink) blocks, For Each Subsystem (Simulink) blocks and
buffers. The input pixels are padded with zeros to allow CSCT computation for the corner pixels. The
resulting stream of pixels is passed to ctLogic subsystem. Figure below shows ctLogic subsystem
which uses the Tapped Delay block to generate a group of pixels. The pixels are buffered for
imgColSize cycles, where imgColSize is the number of pixels in an image line. A group of pixels that
is aligned for comparison is generated from each row. The For Each block and Logical Operator block
replicate the comparison logic for each pixel of the input vector size. To implement a 9-by-7 window,
the model uses four such For Each blocks. The result generated by each For Each block is a vector
which is further concatenated to form a vector of size 31-bits. After Bit Concat (HDL Coder) is used,
the output data type is uint5. CSCT and zero-padding operations are performed separately on the
left and right input images and the results are passed to the Hamming Distance subsystem.

open_system('SGBMDisparityExample/SGBMHDLAlgorithm/MatchingCost/CensusTransform/ctLogic','force');

2 HDL-Optimized Algorithm Design

2-116

In the Hamming Distance subsystem, the 65th result of the left CSCT is XOR'd with the 65th to 2nd
results of the right CSCT. The set bits are counted to obtain Hamming distance. This distance must be
calculated for each disparity level. The right CSCT result is passed to the enabledTappedDelay
subsystem to generate a group of pixels which is then XOR'd with the left CSCT result using For Each
block. The For Each block also counts the set bits in the result. The For Each block replicates the
Hamming distance calculation for each disparity level. The result is a vector, with 64 disparity levels
corresponding to each pixel. This vector is the Matching Cost, and it is passed to the Directional Cost
subsystem.

open_system('SGBMDisparityExample/SGBMHDLAlgorithm/MatchingCost/HammDistA','force');

 Stereo Disparity Using Semi-Global Block Matching

2-117

Directional Cost Calculation

The Directional Cost subsystem computes disparity at each pixel in multiple directions. The five
directions used in the example are left-to-right (A1), top-left-to-bottom-right (A2), top-to-bottom (A3),
top-right-to-bottom-left (A4), and right-to-left (A5). As the cost aggregation at each pixel in each
direction is independent of each other, all five directions are implemented concurrently.

Each directional analysis is investigating the previous cost value with respect to the current cost
value. The value of previous cost required to compute the current cost for each pixel depends on the
direction under consideration. The figure below shows the position of the previous cost with respect
to the current cost under computation, for all five directions.

In the figure above, the blue box indicates the position of the current pixel for which current cost
values are computed. The red box indicates the position of the previous cost values to be used for
current cost computation. For A1, the current cost becomes the previous cost value for the next
computation when traversing from left to right. Thus, the current cost value should be immediately
fed back to compute the next current cost, as described in [3]. For A2, when traversing from left to
right, current cost value should be used as the previous cost value after imgColSize+1 cycles.
Current cost values are hence buffered for cycles equal to imgColSize+1 and then fed back to
compute the next current cost.

Similarly, for A3 and A4, the current cost values are buffered for cycles equal to imgColSize and
imgColSize-1, respectively. However, for A5, when traversing from left to right, the previous cost
value is not available. Thus, the direction of traversal to compute A5 is reversed. This adjustment is

2 HDL-Optimized Algorithm Design

2-118

done by reversing the input pixels of each row. The current cost value then becomes the previous cost
value for the next current cost computation, similar to A1.

The 1-D minimum cost path computes the current cost at d disparity position, using the Matching
Cost value, the previous cost values at disparities d-1, d, and d+1, and the minimum of the previous
cost values. The figure below shows the minimum cost path subsystem, which computes the current
cost at a disparity position for a pixel.

open_system('SGBMDisparityExample/SGBMHDLAlgorithm/DirectionalCost/LeftToRight/lrSubsystem/minCostPath','force');

The For Each block is used to replicate the minimum cost path calculation for each disparity level, for
each direction. The figure below shows the implementation of A1 for 64 disparity levels. As shown in
the figure, 64 minimum cost path calculations are generated as represented by minCostPath
subsystem. The matching cost is an input from the Hamming Distance subsystem. The current cost
computed by the minCostPath subsystem is immediately fed back to itself as the previous cost values,
for the next current cost computation. Thus, values for prevCost_d are now available. Values for
prevCost_d-1 are obtained by shifting the 1st to 63rd fed-back values to the 2nd to 64th positions.
The d-1 subsystem contains a Selector (Simulink) block that shifts the position of the values, and fills
in zero at the 1st position.

Similarly, values for prevCost_d+1 position are obtained by shifting the 2nd to 64th feedback values
to the 1st to 63rd position and inserting a zero at the 64th position. The current cost computed is also
passed to the min block to compute the minimum value from the current cost values. This value is fed
back to the minPrevCost input of the minCostPath subsystem. The next current cost is then computed
by using the current cost values, acting as previous cost values, in the next cycle for A1. Since the
minimum cost of disparity levels from the previous set is immediately needed for the current set, this
feedback path is the critical path in the design.

open_system('SGBMDisparityExample/SGBMHDLAlgorithm/DirectionalCost/LeftToRight/lrSubsystem','force');

 Stereo Disparity Using Semi-Global Block Matching

2-119

The current cost computations for A2, A3, and A4 are implemented in the same manner. Since the
current cost value is not immediately required for these directions, there is a buffer in both feedback
paths. This buffer prevents this feedback path from being the critical path in the design. The figure
below shows the A3 implementation with a buffer in the feedback paths.

open_system('SGBMDisparityExample/SGBMHDLAlgorithm/DirectionalCost/TopToBottom/tbSubsystem','force');

The current cost calculation for A5 has additional logic to reverse the rows at input and again reverse
the rows at output to match the pixel positions for the total cost calculation. A single buffer of
imgColSize cycles achieves this reversal. Since all directions are calculated concurrently, the time
required to reverse the rows must be compensated for on the other paths. Delay equivalent to
2*imgColSize cycles is introduced in the other four directions. To optimize resources, instead of
buffering 64 values of matching cost for each pixel, the 31-bit result of CSCT is buffered. A separate
Hamming Distance module is then required to compute matching cost for A5. This design reduces on-
chip memory usage. The rows are reversed after the CSCT computation and matching cost is
calculated using a separate Hamming Distance module that provides the Matching Cost input to A5.
Also, dataAligner subsystem is used to remove data discontinuity for each row before passing it to
Hamming Distance subsystems. This helps easy synchronization of data at time of aggregation. The

2 HDL-Optimized Algorithm Design

2-120

current cost obtained from all five directions at each pixel are aggregated to obtain the total cost at
each pixel. The total cost is passed to the Post-processing subsystem.

Post-Processing

In the post-processing subsystem, the index of the minimum cost is calculated at each pixel position
from 64 disparity levels by using Min blocks in a tree architecture. The index value obtained is the
disparity of each pixel. Along with minimum cost index computation, the minimum cost value at the
computed index, and the cost values at index-1 and index+1 are also computed. The
Minimum_Cost_Index subsystem implements tree architecture to compute a minimum value from 128
values. 64 disparity values are padded with 64 more values to make a vector of 128 values. Minimum
value is computed from this vector with 128 values. In case, a vector with 128 values is available no
value is padded to a vector or in other words, vector is passed directly for minimum value calculation.
Variant Subsystem, Variant Model (Simulink) is used to select between logic using variant subsystem
variables. Sub-pixel quadratic interpolation is then applied to the index to resolve disparity at sub-
pixel level. Also, a uniqueness function is applied to the index calculated by min blocks, to ensure
reliable disparity results. As a last step, invalid disparities are identified and replaced with -1.

Model Parameters

The model presented here takes disparity levels and uniqueness threshold as input parameters as
shown in figure. Disparity levels is an integer value from 8 to 128 with the default value of 64. Higher
value of disparity level reduces the minimum distance detected. Also, for larger input image size
larger disparity level helps better detection of depth of object. The uniqueness threshold must be a
positive integer value, between 0 and 100 with a typical range from 5 to 15. Lower value of
uniqueness threshold marks more disparities reliable. The default value of uniqueness threshold is 5.

Simulation and Results

The example model can be simulated by specifying a path for the input images in the leftImage and
rightImage blocks. The example uses sample images of size 640-by-480 pixels. The figure shows a
sample input image and the calculated disparity map. The model exports these calculated disparities

 Stereo Disparity Using Semi-Global Block Matching

2-121

and a corresponding valid signal to the MATLAB workspace, using variable names dispMap and
dispMapValid respectively. The output disparity map is 576-by-480 pixels, since the first 64 columns
are unused in the disparity computation. The unused pixels are padded with 0 in Output subsystem to
generate output image of size 640-by-480 as shown in Video Viewer. A disparity map with colorbar is
generated using the commands shown below. Higher disparity values in the result indicate that the
object is nearer to the camera and lower disparity values indicate farther objects.

dispMapValid = find(dispMapValid == 1);
disparityMap = (reshape(dispMap(dispMapValid(1:imgRowSize*imgColSize),:),imgColSize,imgRowSize))';
figure(); imagesc(disparityMap);
title('Disparity Map');
colormap jet; colorbar;

The example model is compatible to generate HDL code. You must have an HDL Coder™ license to
generate HDL code. The design was synthesized for the Intel® Arria® 10 GX (115S2F45I1SG) FPGA.

2 HDL-Optimized Algorithm Design

2-122

The table below shows resource utilization for three disparity level at different image resolutions.
Considering one pair of stereo input images as a frame, the algorithm throughput is estimated by
finding the number of clock cycles required for processing the current frame before the arrival of
next frame. The core algorithm throughput, without overhead of buffering input and output data, is
the maximum operating frequency divided by the minimum cycles required between input frames.
For example, for 128 disparity levels and 1280-by-720 image resolution, the minimum cycles to
process the input frame is 938,857 clock cycles/frame. The maximum operating frequency obtained
for algorithm with 128 disparity levels is 61.69 MHz, the core algorithm throughput is computed as
65 frames per second.

% ==
% |Disparity Levels || 64 || 96 || 128 |
% ==
% |Input Image Resolution || 640 x 480 || 960 x 540 || 1280 x 720 |
% |ALM Utilization || 45,613 (11%) || 64,225 (15%) || 85,194 (20%) |
% |Total Registers || 49,232 || 64,361 || 85,564 |
% |Total Block Memory Bits || 3,137,312 (6%) || 4,599,744 (9%) || 11,527,360 (21%) |
% |Total RAM Blocks || 264 (10%) || 409 (16%) || 741 (28%) |
% |Total DSP Blocks || 65 (4%) || 97 (6%) || 129 (8%) |
% ==

References

[1] Hirschmuller H., Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual
Information, International Conference on Computer Vision and Pattern Recognition, 2005.

[2] Spangenberg R., Langner T., and Rojas R., Weighted Semi-Global matching and Center-Symmetric
Census Transform for Robust Driver Assistance, Computer Analysis of Images and Patterns, 2013.

[3] Gehrig S., Eberli F., and Meyer T., A Real-Time Low-Power Stereo Vision Engine Using Semi-Global
Matching, International Conference on Computer Vision System, 2009.

 Stereo Disparity Using Semi-Global Block Matching

2-123

Stereo Image Rectification
This example shows how to implement stereo image rectification for a calibrated stereo camera pair.
The example model is FPGA-hardware compatible and provides real-time performance. This example
compares its results with the Computer Vision Toolbox™ rectifyStereoImages function.

Introduction

A stereo camera is a camera system with two or more lenses with a separate image sensor for each
lens. They are used for distance estimation, making 3-D pictures, and stereoviews. Camera lenses
distort images, and it is difficult to align two cameras to be perfectly parallel. So, the raw images
from a pair of stereo cameras must be rectified. Stereo image rectification projects images onto a
common image plane in such a way that the corresponding points in the two stereo images have the
same row coordinates. This image projection corrects the images to appear as if the two cameras are
parallel.

The algorithm used in this example performs distortion removal and alignment correction in a single
system.

Stereo Image Rectification Algorithm

The stereo image rectification algorithm uses a reverse mapping technique to map the pixel locations
of the output rectified image to the pixels in the input camera image. The diagram shows the four
stages of the algorithm.

Compute Rectification Parameters: This stage computes rectification parameters from input
stereo camera calibration parameters. These calibration parameters include camera intrinsics,
rotation matrices, translation matrices, and distortion coefficients (radial and tangential). This stage
returns a homography matrix for each camera, and the output bounds. The output bounds are needed
to compute the integer pixel coordinates of the output rectified image, and the homography matrices
are needed to transform integer pixel coordinates in the output rectified image to corresponding
coordinates of the undistorted image.

Inverse Geometric Transform: An inverse geometric transformation translates a point in one image
plane onto another image plane. In stereo image rectification, this operation maps integer pixel
coordinates in the output rectified image to the corresponding coordinates of the input camera image
by using the homography matrix, H. If (p,q) is an integer pixel coordinate in the rectified output
image and (x,y) is the corresponding coordinate of the undistorted image, then this equation
describes the transformation.

2 HDL-Optimized Algorithm Design

2-124

where H is the homography matrix. To convert from homogeneous to cartesian coordinates, x is set to
x/z and y is set to y/z.

Undistortion: Lens distortions are optical aberrations which may deform the images. There are two
main types of lens distortions: radial and tangential distortions. Radial distortion occurs when light
rays bend more near the edges of a lens than they do at its optical center. Tangential distortion
occurs when the lens and the image plane are not parallel. For distortion removal, the algorithm
maps the coordinates of the undistorted image to the input camera image by using distortion
coefficients.

Let (u,v) be the coordinates of the input camera image and (x,y) be the undistorted pixel locations. x
and y are normalized from pixel coordinates by translating to the optical center and dividing by the
focal length in pixels. The following equations describe the undistortion operation.

where .

, are radial distortion coefficients and , are tangential distortion coefficients.

Inverse geometric transformation and undistortion both contribute to an overall mapping between
the coordinates of the output undistorted rectified image (u,v) and the coordinates of the input
camera image.

Interpolation: Interpolation resamples the image intensity values corresponding to the generated
coordinates. The example uses bilinear interpolation.

 Stereo Image Rectification

2-125

As shown in the diagram, (u,v) is the coordinate of the input pixel generated by the undistortion
stage. I1, I2, I3, and I4 are the four neighboring pixels, and deltaU and deltaV are the displacements
of the target pixel from its neighboring pixels. This stage computes the weighted average of the four
neighboring pixels by using this equation.

HDL Implementation

The figure shows the top-level view of the StereoImageRectificationHDL model. The LeftInputImage
and RightInputImage blocks import the stereo left and right images from files. The Frame To Pixels
blocks convert these stereo image frames to pixel streams with pixelcontrol buses for input to the
HDLStereoImageRectification subsystem. This subsystem performs the inverse geometric transform,
undistortion, and interpolation to generate the rectified output pixel values. The Pixels To Frame
blocks convert the streams of output pixels back to frames. The LeftImageViewer and
RightImageViewer subsystems display the input frames and their corresponding rectified outputs.

The InitFcn of the example model imports the stereo calibration parameters from a data file and
computes the rectification parameters by calling ComputeRectificationParams.m. Alternatively,
you can generate your own set of rectification parameters and provide them as mask parameters of
the InverseGeometricTransform and Undistortion subsystems.

The HDLStereoImageRectification subsystem generates a single pixelcontrol bus from the two
input ctrl busses. The RectifiedCoordinateGeneration subsystem generates the row and column pixel
coordinates of the output rectified and undistorted image. It uses two HDL counters to generate the
row and column coordinates. The InverseGeometricTransform subsystems map these coordinates
onto their corresponding row and column coordinates, (x,y), of the distorted image. The Undistortion
subsystems map the (x,y) coordinates to its corresponding coordinate (u,v) of the input camera
image, using the distortion coefficients and stereo camera intrinsics.

The Interpolation subsystems store the pixel intensities of the input stereo images in a memory and
calculate the addresses of the four neighbors of (u,v) required for interpolation. To calculate each

2 HDL-Optimized Algorithm Design

2-126

rectified output pixel intensity, the subsystem reads the four neighbor pixel values and finds their
weighted sum.

Inverse Geometric Transformation

The HDL implementation of inverse geometric transformation multiplies the coordinates [row col 1]
with the inverse homography matrix. The inverse homography matrix (3-by-3) is a masked parameter
of the InverseGeometricTransformation subsystem. ComputeRectificationParams.m, called in
the InitFcn of the model, generates the homography matrix. The Transformation subsystem
implements the matrix multiplication with Product blocks that multiply by each element of the
homography matrix. The HomogeneousToCartesian subsystem converts the generated homogeneous
coordinates, [x y z] back to the cartesian format, [x y] for further processing. The
HomogeneousToCartesian subsystem uses a Reciprocal block configured to use the ShiftAdd
architecture, and the UsePipelines parameter is set to 'on'. To see these parameters, right-click
the block and select HDL Code > HDL Block Properties. Until this stage, the word length was
allowed to grow with each operation. After the HomogeneousToCartesian subsystem, the word length
of the coordinates is truncated to a size that still ensures precision and accuracy of the generated
coordinates.

Undistortion

The HDL implementation of Undistortion takes the 3-by-3 camera intrinsic matrix, distortion
coefficients [k1 k2 p1 p2], and the reciprocal of fx and fy as masked parameters.
ComputeRectificationParams.m, which is called in the InitFcn of the model, generates these

parameters. The intrinsic matrix is defined as .

 Stereo Image Rectification

2-127

The Undistortion subsystem implements the equations mentioned in the Stereo Image Rectification
Algorithm section by using Sum, Product, and Shift arithmetic blocks. The word length is allowed to
grow with each operation, and then the Denormalization subsystem truncates the word length to a
size that still ensures the precision and accuracy of the generated coordinates.

Interpolation

These sections describe the three components inside the Interpolation subsystem.

2 HDL-Optimized Algorithm Design

2-128

Address Generation

The AddressGeneration subsystem takes the mapped coordinate of the input raw image (u,v) as input.
It calculates the displacement deltaU and deltaV of each pixel from its neighboring pixels. It also
rounds the coordinates to the nearest integer toward negative infinity.

The AddressCalculation subsystem checks the coordinates against the bounds of the input images. If
any coordinate is outside the image dimensions, is capped to the boundary value for further
processing. Next, the subsystem calculates the index of the address of each of the four neighborhood
pixels in the CacheMemory subsystem. The index represents the column of the cache. The index for
each address is determined using the even and odd nature of the incoming column and row
coordinates, as determined by the Extract Bits block.

% ==========================
% |Row || Col || Index ||
% ==========================
% |Odd || Odd || 1 ||
% |Even || Odd || 2 ||
% |Odd || Even || 3 ||
% |Even || Even || 4 ||
% ==========================

The address of the neighborhood pixels is generated using this equation:

where nR is the row coordinate, and nC is the column coordinate.

 , , ,

 , , ,

Once all the addresses and their corresponding indices are generated, they are vectorized using a
Vector Concatenate block. The IndexChangeForMemoryAccess MATLAB Function block rearranges
the addresses in increasing order of their indices. This operation ensures the correct fetching of the
data from the CacheMemory block. The addresses are then given as an input to the CacheMemory
block, and the index, deltaU, and deltaV are passed to the BilinearInterpolation subsystem.

 Stereo Image Rectification

2-129

Cache Memory

The CacheMemory subsystem contains a Simple Dual Port RAM block. The input pixels are buffered
to form [Line 1 Pixel 1 | Line 2 Pixel 1 | Line 1 Pixel 2 | Line 2 Pixel 2] in
the RAM. This configuration enables the algorithm to read all four neighboring pixels in one cycle.
The required size of the cache memory is calculated from the offset and displacement parameters in
ComputeRectificationParams.m script. The displacement is the sum of maximum deviation and
the first row map. The first row map is the maximum value of the input image row coordinate that
corresponds to the first row of the output rectified image. Maximum deviation is the greatest
difference between the maximum and minimum row coordinates for each row of the input image row
map.

The WriteControl subsystem forms vectors of incoming pixels, and vectors of write enables and write
addresses. The AddressGeneration subsystem provides a vector of read addresses. The vector of
pixels returned from the RAM are passed to the BilinearInterpolation subsystem.

2 HDL-Optimized Algorithm Design

2-130

Bilinear Interpolation

The BilinearInterpolation subsystem rearranges the vector of read pixels from the cache to their
original indices. Then, the BilinearInterpolationEquation block calculates a weighted sum of the
neighborhood pixels by using the bilinear interpolation equation mentioned in the Stereo Image
Rectification Algorithm section. The result of the interpolation is the value of the output rectified
pixel.

Simulation and Results

This example uses 960-by-1280 stereo images. The input pixels use the uint8 data type. The example
does not provide multipixel support. Due to the large frame sizes used in this example, simulation can
take a relatively long time to complete.

The figure shows the left and right input images and the corresponding rectified output images. The
results of the StereoImageRectificationHDL model match the output of the rectifyStereoImages
function in MATLAB with an error of +/-1.

 Stereo Image Rectification

2-131

You can generate HDL code for the HDLStereoImageRectification subsystem. You must have an HDL
Coder™ license to generate HDL code. This design was synthesized for the Intel® Arria® 10 GX
(115S2F45I1SG) FPGA. The HDL design achieves a clock rate of over 150 MHz. The table shows the
resource utilization for the subsystem.

% ===
% |Model Name || StereoImageRectificationHDL ||
% ===
% |Input Image Resolution || 960 x 1280 ||
% |ALM Utilization || 10675 ||
% |Total Registers || 24487 ||
% |Total RAM Blocks || 327 ||
% |Total DSP Blocks || 218 ||
% ===

2 HDL-Optimized Algorithm Design

2-132

References

[1] G. Bradski and A. Kaehler, Learning OpenCV : Computer Vision with the OpenCV Library.
Sebastopol, CA: O'Reilly, 2008.

See Also
rectifyStereoImages

More About
• “Image Undistortion” on page 2-134
• “Image Warp” on page 2-145

 Stereo Image Rectification

2-133

Image Undistortion
This example shows how to remove lens distortion in images. The algorithm shown here is suitable
for FPGAs.

Lens distortions are optical aberrations that deform images. Images typically have two main types of
lens distortion: radial or tangential.

Radial distortion occurs when light rays bend more near the edges of a lens than they do at its optical
center.

Tangential distortion occurs when the lens and the image plane are not parallel.

An undistort algorithm maps the coordinates of the output undistorted image to the input camera
image by using distortion coefficients. The hardware-friendly undistort implementation in this
example performs the same operation as the imrotate (Image Processing Toolbox) function.

As inputs to the undistort algorithm, you specify the intrinsic matrix and distortion coefficients that
describe the image distortion to be corrected. The intrinsic matrix comprises the focal length, the
optical center (also known as the principal point), and the skew coefficient. The distortion coefficients
model radial and tangential distortions mathematically.

The computeCameraParameters function, included with this example, calculates the input
parameters from the specified output image dimensions and a cameraParameters (Computer Vision

2 HDL-Optimized Algorithm Design

2-134

Toolbox) object that describes the camera intrinsic matrix, distortion coefficients, and camera focal
lengths in x- and y-directions. The cameraParameters object is provided in the cameraParams.mat
file. This function also returns the displacement and offset parameters, which determine how much
memory the undistort operation requires.

The example model calls the computeCameraParameters function in the InitFcn callback, and then
the model removes radial and tangential lens distortions in the input image by using the calculated
parameters.

After undistortion, the hardware algorithm calculates the output pixel intensities by using bilinear
interpolation. The implementation in this example does not require external DDR memory and instead
stores and resamples the output pixel intensities by using on-chip block RAM.

Image Undistortion Algorithm

The image undistortion algorithm maps the pixel locations of the output undistorted image to the
pixels in the input distorted image by using a reverse mapping technique. This diagram shows the
stages of the algorithm.

Compute Camera Calibration Parameters

Camera calibration estimates the parameters of a lens and image sensor of an image or video
camera. These parameters can be used to correct lens distortion, measure the size of an object in
world units, or determine the location of the camera in the scene. Applications such as machine
vision, robotic navigation systems, and 3-D scene reconstruction use these operations to detect and
measure objects. Camera parameters include intrinsics, extrinsics, and distortion coefficients. This
stage computes these parameters from a given input cameraParameters object and feeds them to
the undistortion stage.

Undistortion

This stage removes distortion by using the distortion coefficients and intrinsic matrix of the. These
equations model distortion removal.

Let (u,v) be the coordinates of the input camera image and (x,y) be the undistorted pixel locations.
Normalize x and y from pixel coordinates by translating to the optical center and dividing by the focal
length in pixels.

,

 Image Undistortion

2-135

,

,

,

where .

, are radial distortion coefficients, and , are tangential distortion coefficients. Then,
calculate the final coeffient values by combining the radial and tangential components.

Undistortion defines a mapping between the coordinates of the output undistorted image (u,v) and
the coordinates of the distorted input camera image, (x,y).

Bilinear Interpolation

The image undistortion algorithm can produce noninteger values of (u,v). Generating the pixel
intensity at each integer position requires a resampling technique such as interpolation. This example
resamples the image intensity values corresponding to the generated coordinates by using bilinear
interpolation.

In the equation and the diagram, (u,v) is the coordinate of the input pixel generated by the
undistortion stage. , , , and are the four neighboring pixels, and and are the
displacements of the target pixel from its neighboring pixels. This stage of the algorithm computes
the weighted average of the four neighboring pixels by using this equation.

2 HDL-Optimized Algorithm Design

2-136

HDL Implementation

This figure shows the top-level view of the ImageUndistortHDL model. The InputImage block
imports the image from a file. The Frame To Pixels block converts the input image frames to a pixel
stream and a pixelcontrol bus for input to the ImageUndistortHDLAlgorithm subsystem. This
subsystem removes distortions from the input image by using the distortion coefficients that you
specify in the mask parameters. The Pixels To Frame block converts the stream of output pixels to a
frame. The ImageViewer subsystem displays the input frame and the corresponding undistorted
output.

open_system('ImageUndistortHDL');
set(allchild(0),'Visible','off');

The InitFcn callback of the example model imports the camera calibration parameters from the
cameraParams.mat data file and computes the calibration parameters by calling the
ComputeCameraParameters function provided with this example. Alternatively, you can generate
your own camera calibration parameters and provide them as mask parameters of the
ImageUndistortHDLAlgorithm subsystem.

In the ImageUndistortHDLAlgorithm subsystem, the GenerateControl subsystem uses the
displacement parameter to modify the pixelcontrol bus from the input ctrl port. The
CoordinateGeneration subsystem generates the row and column pixel coordinates (x,y) of the
output undistorted image by using two HDL counters. The Undistortion subsystem maps the (x,y)
position to its corresponding (u,v) position of the input camera image by using the distortion
coefficients and camera intrinsics.

The AddressGeneration subsystem calculates the addresses of the four neighbors of (u,v) required
for interpolation. This subsystem also computes the parameters , , , and ,
required for bilinear interpolation.

The Interpolation subsystem stores the pixel intensities of the input image in a memory modeled
with a Simple Dual Port RAM block. To calculate each output pixel intensity, the subsystem reads the
four neighbor pixel values and computes their weighted sum.

open_system('ImageUndistortHDL/ImageUndistortHDLAlgorithm','force');

 Image Undistortion

2-137

Undistortion

The HDL implementation of undistortion takes the 3-by-3 camera intrinsic matrix, distortion
coefficients , and the reciprocal of and as masked parameters. The
ComputeCameraParameters function, which is called in the InitFcn callback of the model,
generates these parameters. The intrinsic matrix is

$ \left[{\begin{array}{ccc}
 f_{x} & skew & c_{x}\\ 0 & f_{y} & c_{y}\\ 0 & 0 & 1\\
 \end{array} } \right] $.

The Undistortion subsystem implements the equations mentioned in the Image Undistortion
Algorithm section by using Sum, Product, and Shift arithmetic blocks. The word length grows with
each operation, and then the Denormalization subsystem truncates the word length to a size that
ensures the precision and accuracy of the generated coordinates.

open_system('ImageUndistortHDL/ImageUndistortHDLAlgorithm/Undistortion','force');

Address Generation

The AddressGeneration subsystem calculates the displacement and of each pixel from its
neighboring pixels by using the mapped coordinate (u,v) of the input raw image. The subsystem also
rounds the coordinates to the nearest integer toward negative infinity.

open_system('ImageUndistortHDL/ImageUndistortHDLAlgorithm/AddressGeneration','force');

2 HDL-Optimized Algorithm Design

2-138

The AddressCalculation subsystem checks the coordinates against the bounds of the input
images. If any coordinate is outside the image dimensions, the subsystem sets the coordinate to the
boundary value. Next, the subsystem calculates the index of the address for each of the four
neighborhood pixels in the CacheMemory. The index represents the column of the cache. The
subsystem finds the index for each address by using the even and odd nature of the incoming column
and row coordinates, as determined by the Extract Bits block.

% ==========================
% |Row || Col || Index ||
% ==========================
% |Odd || Odd || 1 ||
% |Even || Odd || 2 ||
% |Odd || Even || 3 ||

 Image Undistortion

2-139

% |Even || Even || 4 ||
% ==========================

This equation specifies the address of the neighborhood pixels.

 is the row coordinate and is the column coordinate. When row is even, then . When

row is odd, then . When col is even, then . When col is odd, then .

The IndexChangeForMemoryAccess MATLAB Function block in the AddressCalculation
subsystem rearranges the addresses in increasing order of their indices. This operation ensures the
correct fetching of data from the CacheMemory block. This subsystem passes the addresses to the
CacheMemory subsystem, and passes Index, , and to the Interpolation subsystem.

The OutOfBound subsystem checks whether the (u,v) coordinates are out of bounds (that is, if any
coordinate is outside the image dimensions). If the coordinate is out of bounds, the subsystem sets
the corresponding output pixel to an intensity value of 0.

Finally, a Vector Concatenate block creates vectors of the addresses and indices.

Interpolation

The Interpolation subsystem is a For Each block, which replicates its operation depending on the
dimensions of the input pixel. For example, if the input is an RGB image, then the input pixel
dimensions are 1-by-3, and the model includes three instances of this operation. Because the model
uses a For Each block, it supports RGB or grayscale input. The operation inside the Interpolation
subsystem comprises two subsystems: BilinearInterpolation and CacheMemory.

open_system('ImageUndistortHDL/ImageUndistortHDLAlgorithm/Interpolation','force');

2 HDL-Optimized Algorithm Design

2-140

Cache Memory

The CacheMemory subsystem contains a Simple Dual Port RAM block. The subsystem buffers the
input pixels to form [Line 1 Pixel 1 | Line 2 Pixel 1 | Line 1 Pixel 2 | Line 2
Pixel 2] in the RAM. By using this configuration, the algorithm can read all four neighboring pixels
in one cycle. The example calculates the required size of the cache memory from the offset output of
the ComputeCameraParams function. The offset is the sum of the maximum deviation and the first
row map. The first row map is the maximum value of the input image row coordinate that
corresponds to the first row of the output undistorted image. The maximum deviation is the greatest
difference between the maximum and minimum row coordinates for each row of the input image row
map.

The WriteControl subsystem forms vectors of incoming pixels, write enables, and write addresses.
The AddressGeneration subsystem provides a vector of read addresses. The vector of pixels from
the RAM is the input to the BilinearInterpolation subsystem.

open_system('ImageUndistortHDL/ImageUndistortHDLAlgorithm/Interpolation/CacheMemory','force');

 Image Undistortion

2-141

Bilinear Interpolation

The BilinearInterpolation subsystem rearranges the vector of read pixels from the cache to
their original indices. Then, the BilinearInterpolationEquation subsystem calculates a
weighted sum of the neighborhood pixels by using the bilinear interpolation equation in the Image
Undistortion Algorithm section. The result of the interpolation is the value of the output undistorted
pixel.

open_system('ImageUndistortHDL/ImageUndistortHDLAlgorithm/Interpolation/BilinearInterpolation','force');

Simulation and Results

This example uses a 510-by-510 grayscale input image. The input pixels use the uint8 data type for
either grayscale or RGB input images.

This figure shows the input distorted image and the corresponding output undistorted image for the
camera parameters provided in cameraParams.mat. The results of the ImageUndistortHDL model
for this input matches the output of the undistortImage function.

2 HDL-Optimized Algorithm Design

2-142

To check and generate the HDL code referenced in this example, you must have the HDL Coder™
product.

To generate the HDL code, use this command.

makehdl('ImageUndistortHDL/ImageUndistortHDLAlgorithm')

To generate the test bench, use this command.

makehdltb('ImageUndistortHDL/ImageUndistortHDLAlgorithm')

This design was synthesized using Xilinx® Vivado® for the Xilinx (R) Zynq® ZC706 device and met a
timing requirement of over 200 MHz. This table shows the resource utilization for the HDL
subsystem.

% ===
% |Model Name || ImageUndistortHDL ||
% ===
% |Input Image Resolution || 510 x 510 ||
% |LUT || 2806 ||
% |FF || 2832 ||
% |BRAM || 17 ||

 Image Undistortion

2-143

% |Total DSP Blocks || 53 ||
% ===

See Also

More About
• “Stereo Image Rectification” on page 2-124
• “Image Warp” on page 2-145

2 HDL-Optimized Algorithm Design

2-144

Image Warp
This example shows how to implement affine and projective transforms for FPGAs.

Image warping is a common technique in image processing and computer graphics. This technique
generates an image to specified requirements by geometrically distorting an input image, an
approach that is closely related to the morphing technique. Image warping has diverse applications,
such as registration in remote sensing and creating visual special effects in the entertainment
industry.

The warp algorithm maps locations in the output image to corresponding locations in the input
image, a process known as inverse mapping. The hardware-friendly warp implementation in this
example performs the same operation as imwarp (Image Processing Toolbox) function.

The algorithm in this example performs an inverse geometric transform and calculates the output
pixel intensities by using bilinear interpolation. This implementation does not require external DDR
memory and instead resamples the output pixel intensities by using the on-chip BRAM memory.

Image Warp Algorithm

The image warping algorithm maps the pixel locations of the output warped image to the pixel
locations in the input image by using a reverse mapping technique. This diagram shows the stages of
the algorithm.

Compute Transformation: This stage computes the inverse transformation matrix. The calculated
transformation parameters include the output bounds and the transformation matrix tForm. The
algorithm requires these bounds to compute the integer pixel coordinates of the output image. The
algorithm requires tForm to transform the integer pixel coordinates in the output image to the
corresponding coordinates of the input image.

Inverse Geometric Transform: An inverse geometric transformation translates a point in one image
plane onto another image plane. In image warping, this operation maps the integer pixel coordinates
in the output image to the corresponding coordinates of the input image by using the transformation
matrix. If (u,v) is an integer pixel coordinate in the warped output image and (x,y) is the
corresponding coordinate of the input image, then this equation describes the transformation.

 Image Warp

2-145

tForm is the inverse transformation matrix. To convert from homogeneous to cartesian coordinates,
 and .

Bilinear Interpolation: The warping algorithm can produce coordinates (x,y) with noninteger
values. To generate the pixel intensity values at each integer position, a warp algorithm can use
various resampling techniques. The example uses bilinear interpolation. Interpolation resamples the
image intensity values corresponding to the generated coordinates.

HDL Implementation

The figure shows the top-level view of the ImageWarpHDL model. The Input Image block imports the
images from files. The Frame To Pixels block converts the input image frames to a pixel stream and a
pixelcontrol bus as inputs to the ImageWarpHDLALgorithm subsystem. This subsystem takes
these mask parameters.

• Number of input lines to buffer — The provided ComputeImageWarpCacheOffset function
calculates this parameter from the transformation matrix.

• Input active pixels — Horizontal size of the input image.
• Input active lines — Vertical size of the input image.

The ImageWarpHDLAlgorithm subsystem warps the input image as specified by the value of the
tForm input port. The Pixels To Frame block converts the streams of output pixels back to frames.
The ImageViewer subsystem displays the input frame and the corresponding warped output.

open_system('ImageWarpHDL');
set(allchild(0),'Visible','off');

The InitFcn callback function loads the transformation matrix from tForm.mat. Alternatively, you can
generate your own transformation matrix (in the form of a nine-element column vector) and use this
vector as the input to the ImageWarpHDLAlgorithm subsystem. The InitFcn callback function of the
example model also computes the cache offset by calling the ComputeImageWarpCacheOffset
function. This function calculates the offset and displacement parameters of the output image from
the transformation matrix and output image dimensions.

In the ImageWarpHDLAlgorithm subsystem, the GenerateControl subsystem uses the
displacement parameter to modify the pixelcontrol bus from the input ctrl port. The
CoordinateGeneration subsystem generates the row and column pixel coordinates (u,v) of the
output image by using two HDL counters. The InverseTransform subsystem maps these
coordinates onto their corresponding coordinates (x,y) of the input image.

2 HDL-Optimized Algorithm Design

2-146

The AddressGeneration subsystem calculates the addresses of the four neighbors of (x,y) required
for interpolation. This subsystem also computes the parameters , , , and

, which the model uses for bilinear interpolation.

The Interpolation subsystem stores the pixel intensities of the input image in a memory. To
calculate each output pixel intensity, the subsystem reads the four neighbor pixel values and
computes their weighted sum.

open_system('ImageWarpHDL/ImageWarpHDLAlgorithm','force');

Inverse Transformation

The HDL implementation of the inverse geometric transformation multiplies the coordinates [u v 1]
by the transformation matrix. The Transformation subsystem implements the matrix multiplication
with Product blocks, which multiply the integer coordinates of the output image by each element of
the transformation matrix. For this operation, the Transformation subsystem splits the
transformation matrix into individual elements by using a Demux block. The
HomogeneousToCartesian subsystem converts the generated homogeneous coordinates, [x y z]
back to the cartesian format [x y] for further processing. The HomogeneousToCartesian subsystem
uses a Reciprocal block configured to use the ShiftAdd architecture, and the Product blocks that
compute x and y use the ShiftAdd architecture for better hardware clock speed. To see these
parameters, right-click the block and select HDL Code > HDL Block Properties.

open_system('ImageWarpHDL/ImageWarpHDLAlgorithm/InverseTransform','force');

Address Generation

The AddressGeneration subsystem calculates the displacement of each pixel from its neighboring
pixels by using the mapped coordinate (x,y) of the input raw image. The subsystem also rounds the
coordinates to the nearest integer toward negative infinity.

 Image Warp

2-147

open_system('ImageWarpHDL/ImageWarpHDLAlgorithm/AddressGeneration','force');

The AddressCalculation subsystem checks the coordinates against the bounds of the input
images. If any coordinate is outside the image dimensions, the subsystem sets that coordinate to the
boundary value. Next, the subsystem calculates the index of the address for each of the four
neighborhood pixels in the CacheMemory subsystem. The index represents the column of the cache.
The subsystem finds the index for each address by using the even and odd nature of the incoming
column and row coordinates, as determined by the Extract Bits block.

% ==========================
% |Row || Col || Index ||
% ==========================
% |Odd || Odd || 1 ||
% |Even || Odd || 2 ||

2 HDL-Optimized Algorithm Design

2-148

% |Odd || Even || 3 ||
% |Even || Even || 4 ||
% ==========================

This equation specifies the address of the neighborhood pixels.

 is the row coordinate and is the column coordinate. When row is even, then . When

row is odd, then . When col is even, then . When col is odd, then .

The IndexChangeForMemoryAccess MATLAB Function block in the AddressCalculation
subsystem rearranges the addresses in increasing order of their indices. This operation ensures the
correct fetching of data from the CacheMemory block. This subsystem passes the addresses to the
CacheMemory subsystem, and passes Index, , and to the Interpolation subsystem.

The OutOfBound subsystem checks whether the (x,y) coordinates are out of bounds (that is, if any
coordinate is outside the image dimensions). If the coordinate is out of bounds, the subsystem sets
the corresponding output pixel to an intensity value of 0.

Finally, a Vector Concatenate block creates vectors of the addresses and indices.

Interpolation

The Interpolation subsystem is a For Each block, which replicates its operation depending on the
dimensions of the input pixel. For example, if the input is an RGB image, then the input pixel
dimensions are 1-by-3, and the model includes three instances of this operation. Because the model
uses a For Each block, it supports RGB or grayscale input. The operation inside the Interpolation
subsystem comprises two subsystems: BilinearInterpolation and CacheMemory.

open_system('ImageWarpHDL/ImageWarpHDLAlgorithm/Interpolation','force');

 Image Warp

2-149

Cache Memory

The CacheMemory subsystem contains a Simple Dual Port RAM block. The subsystem buffers the
input pixels to form [Line 1 Pixel 1 | Line 2 Pixel 1 | Line 1 Pixel 2 | Line 2
Pixel 2] in the RAM. By using this configuration, the algorithm can read all four neighboring pixels
in one cycle. The example calculates the required size of the cache memory from the offset output of
the ComputeImageWarpCacheOffset function. The offset is the sum of the maximum deviation and
the first row map. The first row map is the maximum value of the input image row coordinate that
corresponds to the first row of the output undistorted image. The maximum deviation is the greatest
difference between the maximum and minimum row coordinates for each row of the input image row
map.

The WriteControl subsystem forms vectors of incoming pixels, write enables, and write addresses.
The AddressGeneration subsystem provides a vector of read addresses. The vector of pixels from
the RAM is the input to the BilinearInterpolation subsystem.

open_system('ImageWarpHDL/ImageWarpHDLAlgorithm/Interpolation/CacheMemory','force');

2 HDL-Optimized Algorithm Design

2-150

Bilinear Interpolation

The BilinearInterpolation subsystem rearranges the vector of read pixels from the cache to
their original indices. Then, the BilinearInterpolationEquation subsystem calculates a
weighted sum of the neighborhood pixels. The result of the interpolation is the value of the output
warped pixel.

open_system('ImageWarpHDL/ImageWarpHDLAlgorithm/Interpolation/BilinearInterpolation','force');

In the equation and the diagram, (u,v) is the coordinate of the input pixel generated by the inverse
tranformation stage. , , , and are the four neighboring pixels, and and are the
displacements of the target pixel from its neighboring pixels. This stage of the algorithm computes
the weighted average of the four neighboring pixels by using this equation.

 Image Warp

2-151

Simulation and Results

This example uses a 480p RGB input image. The input pixels use the uint8 data type for either
grayscale and RGB input images.

This implementation uses on chip BRAM memory rather than external DDR memory. The amount of
BRAM required for the computation of output pixel intensities is directly proportional to the number
of input lines required to be buffered in the cache. This bar graph shows the number of lines required
in the cache for different angles of rotation of the output image. For this graph, the scaling factor is
1.1, and the translation in the x- and y-directions is 0.6 and 0.3, respectively.

2 HDL-Optimized Algorithm Design

2-152

This figure shows the input image and the corresponding output image rotated by an angle of four
degrees, scaled by a factor of 1.1, and translated by 0.4 and 0.8 in the x- and y-directions,
respectively. The results of the ImageWarpHDL model match the output of the imwarp function in
MATLAB.

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

 Image Warp

2-153

To generate the HDL code, use this command.

makehdl('ImageWarpHDL/ImageWarpHDLAlgorithm')

To generate the test bench, use this command.

makehdltb('ImageWarpHDL/ImageWarpHDLAlgorithm')

This design was synthesized using Xilinx® Vivado® for the Xilinx® Zynq®-7000 SoC ZC706
development kit and met a timing requirement of over 200MHz. The table shows the resource
utilization for the HDL subsystem.

% ===
% |Model Name || ImageWarpHDL ||
% ===
% |Input Image Resolution || 480 x 640 ||
% |Slice LUTs || 7325 ||
% |Slice Registers || 7431 ||
% |BRAM || 97 ||
% |Total DSP Blocks || 82 ||
% ===

See Also

More About
• “Stereo Image Rectification” on page 2-124
• “Image Undistortion” on page 2-134

2 HDL-Optimized Algorithm Design

2-154

Low Light Enhancement
This example shows how to enhance low-light images using an algorithm suitable for FPGAs.

Low-light enhancement (LLE) is a pre-processing step for applications in autonomous driving,
scientific data capture, and general visual enhancement. Images captured in low-light and uneven
brightness conditions have low dynamic range with high noise levels. These qualities can lead to
degradation of the overall performance of computer vision algorithms that process such images. This
algorithm improves the visibility of the underlying features in an image.

The example model includes a floating-point frame-based algorithm as a reference, a simplified
implementation that reduces division operations, and a streaming fixed-point implementation of the
simplified algorithm that is suitable for hardware.

LLE Algorithm

This example performs LLE by inverting an input image and then applying a de-haze algorithm on the
inverted image. After inverting the low-light image, the pixels representing non-sky region have low
intensities in at least one color channel. This characteristic is similar to an image captured in hazy
weather conditions [1]. The intensity of these dark pixels is mainly due to scattering, or airlight, so
they provide an accurate estimation of the haze effects. To improve the dark channel in an inverted
low-light image, the algorithm modifies the airlight image based on the ambient light conditions. The
airlight image is modified using the dark channel estimation and then refined with a smoothing filter.
To avoid noise from over-enhancement, the example applies non-linear correction to better estimate
the airlight map. Although this example differs in its approach, for a brief overview of low-light image
enhancement, see “Low-Light Image Enhancement” (Image Processing Toolbox).

The LLE algorithm takes a 3-channel low-light RGB image as input. This figure shows the block
diagram of the LLE Algorithm.

The algorithm consists of six stages.

1. Scaling and Inversion: The input image is converted to range [0,1] by dividing
by 255 and then inverting pixel-wise.

2. Dark Channel Estimation: The dark channel is estimated by finding the pixel-wise minimum across
all three channels of the inverted image [2]. The minimum value is multiplied by a haze factor, , that

 Low Light Enhancement

2-155

represents the amount of haze to remove. The value of is between 0 and 1. A higher value means
more haze will be removed from the image.

3. Refinement: The airlight image from the previous stage is refined by iterative smoothing. This
smoothing strengthens the details of the image after enhancement. This stage consists of five filter
iterations with a 3-by-3 kernel for each stage. The refined image is stored in . These
equations derive the filter coefficients, , used for smoothing.

4. Non-Linear Correction: To reduce over-enhancement, the refined image is corrected using a non-
linear correction equation shown below. The constant, , represents the mid-line of changing the
dark regions of the airlight map from dark to bright values. The example uses an empirically-derived
value of .

5. Restoration: Restoration is performed pixel-wise across the three channels of the inverted and
corrected image, , as shown:

6. Inversion: To obtain the final enhanced image, this stage inverts the output of the restoration
stage, and scales to the range [0,255].

LLE Algorithm Simplification

The scaling, non-linear correction, and restoration steps involve a divide operation which is not
efficient to implement in hardware. To reduce the computation involved, the equations in the
algorithm are simplified by substituting the result of one stage into the next stage. This substitution
results in a single constant multiplication factor rather than several divides.

Dark channel estimation without scaling and inversion is given by

The result of the iterative refinement operation on is

2 HDL-Optimized Algorithm Design

2-156

where

Substituting into the non-linear correction equation gives

Substituting into the restoration equation gives

Subtracting from 1 and multiplying by 255 gives

With the intensity midpoint, , set to 0.6 and the haze factor, , set to 0.9, the simplified equation is

In the equation above, the factor multiplied with can be called the Enhancement Factor. The
constant can be implemented as a constant multiplication rather than a divide. Therefore, the HDL
implementation of this equation does not require a division block.

HDL Implementation

The simplified equation is implemented for HDL code generation by converting to a streaming video
interface and using fixed-point data types. The serial interface mimics a real video system and is
efficient for hardware designs because less memory is required to store pixel data for computation.
The serial interface also allows the design to operate independently of image size and format, and
makes it more resilient to video timing errors. Fixed-point data types use fewer resources and give
better performance on FPGA than floating-point types.

open_system('LLEExample');

 Low Light Enhancement

2-157

The location of the input image is specified in the LowLightImage block. The LLEBehavioural
subsystem computes the enhanced image using the raw equations as described in the LLE Algorithm
section. The LLESimplified subsystem computes the enhanced image using the simplified equations.
The simpOutputViewer shows the output of the LLESimplified subsystem.

The LLEHDL subsystem implements the simplified equation using a steaming pixel format and fixed-
point blocks from Vision HDL Toolbox™. The Input subsystem converts the input frames to a pixel
stream of uint8 values and a pixelcontrol bus using the Frame To Pixel block. The Output
subsystem converts the output pixel stream back to image frames for each channel using the Pixel To
Frame block. The resulting frames are compared with result of the LLESimplified subsystem. The
hdlOutputViewer subsystem and inputViewer subsystem show the enhanced output image and the
low-light input image, respectively.

open_system('LLEExample/LLEHDL');

The LLEHDL subsystem inverts the input uint8 pixel stream by subtracting each pixel from 255.
Then the DarkChannel subsystem calculates the dark channel intensity minimum across all three
channels. The IterativeFilter subsystem smooths the airlight image using sequential Image Filter
blocks. The bit growth of each filter stage is maintained to preserve the precision. The Enhancement
Factor is calculated in EnhancementFactor area. The constant is implemented using Constant and

2 HDL-Optimized Algorithm Design

2-158

Reciprocal blocks. The Pixel Stream Aligner block aligns the input pixel stream with the pipelined,
modified stream. The aligned input stream is then multiplied by the modified pixel stream.

Simulation and Results

The input to the model is provided in the LowLightImage (Image From File) block. This example uses
a 720-by-576 pixel input image with RGB channels. Both the input pixels and the enhanced output
pixels use uint8 data type. The necessary variables for the example are initialized in InitFcn
callback.

The LLEBehavioural subsystem uses floating-point Simulink blocks to prototype the equations
mentioned in the LLE Algorithm section. The LLESimplified subsystem implements the simplified
equation in floating-point blocks, with no divide operation. The LLEHDL subsystem implements the
simplified equation using fixed-point blocks and streaming video interface. The figure shows the input
image and the enhanced output images obtained from the LLESimplified subsystem and the LLEHDL
subsystem.

The accuracy of the result can be calculated using the percentage of error pixels. To compute the
percentage of error pixels in the output image, the difference between the pixel value of the
reference output image and the LLEHDL output image should not be greater than one, for each
channel. The percent of pixel values that differ by more than 1 is computed for the three channels.
The simpError subsystem compares the result of the LLEBehavioural subsystem with the result of the
LLESimplified subsystem. The hdlError subsystem compares the result of the LLEHDL subsystem
with the result of the LLESimplified subsystem. The error pixel count is displayed for each channel.
The table shows the percentage of error pixels calculated by both comparisons.

 Low Light Enhancement

2-159

References

[1] X. Dong, G. Wang, Y. Pang, W. Li, and J. Wen, "Fast efficient algorithm for enhancement of low
lighting video" IEEE International Conference on Multimedia and Expo, 2011.

2 HDL-Optimized Algorithm Design

2-160

Contrast Limited Adaptive Histogram Equalization
This example shows how to implement a contrast-limited adaptive histogram equalization (CLAHE)
algorithm using Simulink® blocks. The example model is FPGA-hardware compatible.

The example uses the adapthisteq function from the Image Processing Toolbox™ as reference to
verify the design.

Introduction

Adaptive histogram equalization (AHE) is an image pre-processing technique used to improve
contrast in images. It computes several histograms, each corresponding to a distinct section of the
image, and uses them to redistribute the luminance values of the image. It is therefore suitable for
improving the local contrast and enhancing the definitions of edges in each region of an image.
However, AHE has a tendency to overamplify noise in relatively homogeneous regions of an image. A
variant of adaptive histogram equalization called contrast-limited adaptive histogram equalization
(CLAHE) prevents this effect by limiting the amplification.

CLAHE Algorithm

 Contrast Limited Adaptive Histogram Equalization

2-161

The CLAHE algorithm has three major parts: tile generation, histogram equalization, and bilinear
interpolation. The input image is first divided into sections. Each section is called a tile. The input
image shown in the figure is divided into four tiles. Histogram equalization is then performed on each
tile using a pre-defined clip limit. Histogram equalization consists of five steps: histogram
computation, excess calculation, excess distribution, excess redistribution, and scaling and mapping
using a cumulative distribution function (CDF). The histogram is computed as a set of bins for each
tile. Histogram bin values higher than the clip limit are accumulated and distributed into other bins.
CDF is then calculated for the histogram values. CDF values of each tile are scaled and mapped using
the input image pixel values. The resulting tiles are stitched together using bilinear interpolation, to
generate an output image with improved contrast.

HDL Implementation

This figure shows the block diagram of the HDL implementation of the CLAHE algorithm. It consists
of a tile generation block, a histogram equalization pipeline block, a bilinear interpolation block, and
an input image buffer block. Tiles are generated by modifying the pixelcontrol bus of the pixel
stream for the desired tile size. The pixel stream and the modified pixelcontrol bus are fed to the
histogram equalization pipeline. Two histogram equalization pipelines are required to keep pace with
the input data. They operate in ping-pong manner. Each pipeline contains histogram equalization
modules equal to the number of tiles in the horizontal direction. The histogram equalization modules
work in parallel to compute histogram equalization for each tile. The last stage in the histogram
equalization module, scaling and mapping, needs the original input image data. This data is stored in
an input image buffer block. The bilinear interpolation block generates addresses to read the input
image pixel values from the memory. The input image pixel values from the image buffer block are
given to the histogram equalization modules for mapping. Mapped values obtained from histogram
equalization are scaled and used in the bilinear interpolation computation to reduce boundary
artifacts.

modelname = 'CLAHEExample';
open_system(modelname,'force');
set_param(modelname,'SampleTimeColors','off');
set_param(modelname,'Open','on');

2 HDL-Optimized Algorithm Design

2-162

set_param(modelname,'SimulationCommand','Update');
set(allchild(0),'Visible','off');

The figure shows the top level view of the CLAHEExample model. The input image path is specified in
the inputImage block. The input image frame is converted to a pixel stream and pixelcontrol bus
using a Frame To Pixels block. The pixel stream is passed to the CLAHEHDLAlgorithm subsystem for
contrast enhancement and is also stored in the imgBuffer subsystem. While processing, the
CLAHEHDLAlgorithm subsystem generates the address to read image data from the imgBuffer
subsystem. The pixel value read from the imgBuffer subsystem is passed to CLAHEHDLAlgorithm for
adjustment. The adjusted pixel values are given to the Pixels To Frame block and converted to a
frame using the control signals. The Result subsystem shows the input image and output image once
all the pixels in the frame have been received by the Pixels To Frame block.

Tile Generation

system = 'CLAHEExample/CLAHEHDLAlgorithm/tileGeneration';
open_system(system,'force');

 Contrast Limited Adaptive Histogram Equalization

2-163

The figure shows the tile generation subsystem. The input image is divided into 8 tiles in both
horizontal and vertical directions. Tiles are created by modifying the input pixelcontrol bus to
select the pixels in each tile region. The VerticalTileExtractor subsystem extracts tiles in the vertical
direction. The size of a vertical tile is computed by dividing the number of rows in the input image by
the number of tiles in the vertical direction (8 in this example). This vertical tile is given to the ROI
Selector block to generate 8 horizontal tiles and their corresponding pixelcontrol busses. The size
of the horizontal tiles is computed by dividing the number of columns by the number of tiles in the
horizontal direction (8 in this example). The pixel stream to the histogram equalization pipeline is
controlled by diverting each vertical tile to an alternate pipe. The tile size calculated in either must
be an even integer. If the input image does not divide into an integer number of even-sized tiles, pad
the input image symmetrically.

Histogram Equalization Pipeline

system = 'CLAHEExample/CLAHEHDLAlgorithm/histoEqPipeline/';
subsystem = [system 'histPipe1'];
open_system(subsystem,'force');

2 HDL-Optimized Algorithm Design

2-164

Two histogram equalization pipelines are used to keep pace with the streaming input pixels. Each
histogram equalization pipeline consists of 8 histogram equalization modules corresponding to each
tile in the horizontal direction. These modules are implemented by using a For Each subsystem. Each
histogram equalization module is divided into five stages: histogram calculation, total excess
calculation, total excess distribution, excess redistribution, cumulative distribution function, and
mapping.

The first module of the histogram pipeline, histoExcess subsystem, performs histogram calculation
and total excess calculation for each tile. To compute the histogram, the Histogram block is used.
When the histogram is complete the block generates a readRdy signal. The subsystem then reads the
histogram values and determines excess value from each bin by using clip limit value. The clip limit is
computed from the normalized clip limit value specified using these equations.

 Contrast Limited Adaptive Histogram Equalization

2-165

The excess value from each bin is accumulated to form total excess value. The previously computed
histogram values are not changed during total excess calculation and are stored in a Simple Dual Port
RAM memory block. The necessary control signals for the RAM block (ramBus) are generated by the
histoExcess subsystem. The total excess value calculated in the histoExcess subsystem is used by the
Distribute subsystem.

The Distribute subsystem computes two variables: average bin increment and upper limit. These
values are computed from the total excess value by using these equations:

The Distribute subsystem then reads the value of each histogram bin from the RAM block. It updates
the value at every bin based on these three conditions:

1 If the histogram value of a bin is greater than the clip limit, it is replaced with the clip limit.
2 If the histogram value of a bin is between the clip limit and the upper limit, the histogram value

is replaced with the clip limit. The total excess value is reduced by the number of added pixels
equal to (clipLimit - histVal).

3 If the histogram value of a bin is less than the upper limit, the histogram value is increased by
the average bin increment. The total excess value is reduced by the average bin increment.

The adjusted histogram value is stored at the same address. The remaining total excess value is
passed to the Redistribute subsystem as excess value.

system = 'CLAHEExample/CLAHEHDLAlgorithm/histoEqPipeline/';
subsystem = [system 'histPipe1/redistribute'];
open_system(subsystem,'force');

2 HDL-Optimized Algorithm Design

2-166

The Redistribute subsystem distributes spillover excess values to the histogram bins. It primarily uses
two variables to distribute excess values: binIncr and step. binIncr specifies the value to be added
to the histogram bins. step specifies the increment in the address counter used to fetch the
histogram bin value. If the excess is greater than or equal to the number of bins, then binIncr is
calculated by dividing the excess value by the number of bins, and step is set to 1. The divide is
implemented by using a right-shift operation, since the number of bins is a power of 2.

If the excess is less than the number of bins, binIncr is set to 1 and step is calculated by dividing the
number of bins by the excess value. The divide is computed by using a n-D Lookup Table (Simulink)
block. The redistributeCtrl MATLAB Function generates the address for the RAM block by using
the step value computed. When the address reaches the total number of bins, the step value is re-
computed using the most recent excess value. Care is taken to not repeat the first bin as the start bin
for redistribution. If the value of the histogram bin is less than the clip limit, it is increased by
binIncr, and the same value is subtracted from the excess value. If the value of histogram bin is
equal to the clip limit, no operation is performed and the value is written back to the same address.
The MATLAB Function block repeats these bin adjustments until the excess value reaches 0.

The last stage of the histogram equalization pipeline is CDF calculation. The CDF subsystem
computes the cumulative sum of the histogram bin values. The histogram values are read from the
RAM block and added to the sum of the previous histogram bin values. It is then stored to the same
address.

 Contrast Limited Adaptive Histogram Equalization

2-167

The five stages of the histogram equalization module can be considered as five states. The five states
of histogram equalization module are sequential. Thus, a state counter is used to move from one state
to another state. A counter value determines the state of the histogram equalization module. A
Multiport Switch (Simulink) block is used with the state counter as the index value. The multi-port
switch connects the ramBus from each state with the correct memory according to the index. The
state counter is in state 1 in idle condition. When histoExcess finishes excess calculation it sets the
done signal to 1 for one cycle, and the state counter moves to state 2. Similarly, the distribute
subsystem, redistribute subsystem, and cdf subsystem generate done flags when their processing
completes. These done flags increment the state counter to state 5, where it uses input image pixel
values from the input image buffer block as addresses to read CDF values from the RAM. The address
counter that reads the input image values is driven by the bilinear interpolation subsystem. The state
counter is incremented by the bilinear interpolation subsystem when mapping for the respective
pipeline is complete.

Bilinear Interpolation

Bilinear interpolation is used to smooth edges when the tiles are stitched together. The figure shows
how four tiles are used to compute pixel values in the output image. The each tile is divided into four
parts. One part from each of the four tiles are grouped together to compute bilinear interpolation for
that section of the image.

Interpolation uses this equation:

The bilinear interpolation equation uses the position of a pixel with respect to each tile and the
intensity information at that position to compute a pixel value in the output image. The intensity
information is obtained from the input image pixel values stored in the image buffer. For corner tiles,
intensity values are replicated (mirrored). The intensity information at the respective position in each
tile is extracted from the CDF function of the histogram equalization pipeline by using the input
image pixel value at the same position. The grayxform function scales the values obtained from the
CDF function. The result is then divided by the number of pixels in a tile, represented as normFactor
in the equation.

system = 'CLAHEExample/CLAHEHDLAlgorithm/bilinearInterpolation';
open_system(system,'force');

2 HDL-Optimized Algorithm Design

2-168

The figure shows the HDL implementation of the bilinear interpolation subsystem. When the
histogram equalization pipeline reaches state 5, the paramCalc subsystem starts computing the read
address for the imgBuffer subsystem. The pixel value read from the buffered image is the address for
the RAM in the histogram equalization pipeline. CDF values are fetched from the read address for all
the tiles from both the histogram equalization pipelines simultaneously. The required CDF values are
selected and passed to the equation subsystem using Selector Switch blocks and Switch blocks. The
Switch block selects which pipeline contains upper/lower tiles and the Selector Switch blocks select
data corresponding to left/right tiles. The control signals for the Selector Switch and Switch blocks
are generated in the paramCalc subsystem by using a read counter. Thus, intensity values at a pixel
position for each tile are obtained from the image buffer. The bilinear interpolation equation also
requires the pixel position and the total number of pixels in the tile. These parameters are also
generated in the paramCalc subsystem. The equation subsystem is pipelined to optimize performance
in hardware. The result is returned as a pixel stream with a pixelcontrol bus.

 Contrast Limited Adaptive Histogram Equalization

2-169

Bilinear interpolation of the output image is computed by traversing the rows from left to right. When
all histogram equalization modules in the first pipeline have reached state 5, the paramCalc
subsystem is enabled. The read addresses for the imgBuffer subsystem are computed until point A.
Further computation of bilinear interpolation requires values from the histogram equalization
modules of the second pipeline. When all histogram equalization modules in the second pipeline have
reached state 5, the read address counter is again enabled and the bilinear interpolation output
results are computed for pixel positions between point A and point B. Once the address counter
reaches point B, results from first pipeline are no longer required. The pipe1Done signal is
generated to change the state of the first histogram equalization pipeline modules back to state 1.
Until this point, the tiles in the first pipeline are upper tiles and the tiles in the second pipeline are
lower tiles. For the computation of values between point B and point C, the tiles in the second
pipeline become the upper tiles and tiles in the first pipeline are now lower tiles. This operation
continues until only the lowest tiles in the image remain. The output for these tiles is computed by
replicating the values for the other pipeline. The output results are pushed into a FIFO in the
outputStage subsystem and popped out such that the output valid signal is similar to that of the input
pixel stream.

Model Parameters

CLAHE uses a clip limit to prevent over-saturation of the image in homogeneous areas. These areas
are characterized by a high peak in the histogram of an image tile due to many pixels falling in the
same intensity range. For the model presented here, the clip limit is a user-defined normalized value.
The default value is 0.01 (as shown in figure). The clip limit can be any value between 0 and 1
(inclusive).

Simulation and Results

This example uses an input image of size 240-by-320 pixels, whose path is specified in the inputImage
block. The input image pixels are specified by a single intensity component in uint8 data type. For 8
tiles in each direction, the computed tile size is 30-by-40 and the number of pixels in each tile is 1200.
The number of histogram bins is set to 256.

2 HDL-Optimized Algorithm Design

2-170

This figure shows the input image and output image from the CLAHE model. The result shows the
improved contrast in the output image, without over- saturation. The result of the CLAHE HDL model
matches the adaphisteq function in MATLAB and has error of 1 pixel.

HDL code can be generated for the CLAHEHDL subsystem. An HDL Coder™ license is required to
generate HDL code. This design was synthesized on the Intel® Arria® 10 GX platform, for
10AX115S2F45I1SG FPGA device. The table shows the resource utilization. The HDL design achieves
a clock rate of over 120 MHz.

% ==
% |Model Name || CLAHEHDL ||
% ==
% |Input Image Resolution || 320 x 240 ||
% |ALM Utilization || 47814 ||
% |Total Registers || 53031 ||
% |Total RAM Blocks || 77 ||
% |Total DSP Blocks || 38 ||
% ==

References

Karel Zuiderveld, "Contrast Limited Adaptive Histogram Equalization", Graphics Gems IV, p. 474-485,
code: p. 479-484.

 Contrast Limited Adaptive Histogram Equalization

2-171

Image Resize
This example shows how to downsample an image by using the bilinear, bicubic, or Lanczos-2
interpolation algorithm. The implementation uses an architecture suitable for FPGAs.

In theory, you can achieve exact image reconstruction by resizing the image using a sinc kernel.
However, sinc kernels have infinite spatial extent. To limit the extent, interpolation implementations
use simpler kernels to approximate a sinc. The bilinear interpolation algorithm uses the weighted
sum of the nearest four pixels to determine the values of the output pixels. Bicubic and Lanczos-2
interpolations are approximations of a sinc kernel. Bicubic interpolation is a more computationally
efficient version of the Lanczos-2 method.

Behavioral Reference

By default, the Image Processing Toolbox™ function imresize uses the bicubic interpolation
algorithm. You can choose bilinear or Lanczos-2 interpolation algorithms by setting the 'Method'
name-value pair argument to 'bilinear' or 'lanczos-2', respectively.

v = VideoReader('rhinos.avi');
I = readFrame(v);
Y = imresize(I,[160,256],'Method','bilinear');
figure;
imshow(Y);

Interpolation Algorithms

Bilinear interpolation determines the inserted pixel value from the weighted average of the four input
pixels nearest to the inserted location. and are horizontal scale and vertical scale, respectively,
and are calculated independently.

2 HDL-Optimized Algorithm Design

2-172

The value for each output pixel is given by .

The bicubic algorithm calculates the average of the 16 input pixels nearest to the inserted location.

The bicubic coefficients are given by .

These equations show that the bilinear and bicubic algorithms calculate coefficients for each output
pixel.

The Lanczos-2 algorithm precalculates the coefficients based on the resize factor. The model calls the
lanczos2_coeffi.m script to calculate and store these coefficients. The script calculates the
Lanczos-2 coefficients using 6 taps and 32 phases.

Implementation of Interpolation Algorithms for HDL

This figure shows the principle used to implement the image resize algorithm for hardware. For
example, consider downsampling an image by a scale factor of 3/4. One possible implementation of

 Image Resize

2-173

downsampling an image by 3/4 is to upsample by a factor of 3 and then downsample by a factor of 4.
The figure shows the pixel indexes after these operations. Blue dots represent the original pixels, and
green crosses represent the interpolated pixels after upsampling.

The indexes after downsampling show that not all the interpolated pixels are used in the output
image. This example implements a more efficient version of the downsample step by generating
interpolated pixels only when they are needed in the output image.

The phase, shown in the bottom line of the figure, is an index that selects which pixels are needed for
the output image. When the phase is 0, the algorithm returns the original input pixel value. When the
phase is 1, the algorithm calculates coefficients to generate the interpolated pixel in the first position.
When the phase is 2, the algorithm calculates coefficients to generate the interpolated pixel in the
second position.

Example Model

Similar to the imresize function, the imresize(downsample) subsystem in this model supports two
ways to define the output image size. You can specify a scale factor ranging from 1.000 to 127.999, or
you can define the output frame width and height in pixels. Double-click the imresize(downsample)
subsystem to set its parameters.

To avoid aliasing introduced by lowering the sampling rate, the model includes a lowpass filter before
the imresize(downsample) subsystem. After the imresize(downsample) subsystem, the Pixel Stream
FIFO block consolidates the output pixels into contiguous lines of valid pixels surrounded by blanking
intervals of invalid pixels. This FIFO is optional. Use the FIFO when you want to take advantage of
the increased blanking interval to perform further computations on the pixel stream. The Measure
Timing block displays the size of the output frames.

modelname = 'ImageResizeForFPGAHDL';
open_system(modelname);
set_param(modelname,'SampleTimeColors','on');
set_param(modelname,'Open','on');
set(allchild(0),'Visible','off');

2 HDL-Optimized Algorithm Design

2-174

In the imresize(downsample) subsystem, the input_conversion and output_conversion subsystems
convert the colorspace of the pixel stream based on the parameter on the mask. The
valid_gen_horizontal and valid_gen_vertical subsystems return control signals that are used for
generating coefficients and rebuilding the output control bus. If the last line of the image contains no
valid pixels after downsampling, the ctrlBusRebuild subsystem rebuilds the control bus for the new
size.

open_system([modelname '/imresize(downsample)'],'force');

This diagram shows the expected output from the valid_gen_horizontal and valid_gen_vertical
subsystems. The valid signal indicates the validity of the current address and the corresponding

 Image Resize

2-175

phase. To simplify rebuilding the control bus, the first line and row of each output frame are always
valid.

The coefficient generation subsystem, coeffi_gen, is a variant subsystem, where bilinear, bicubic, and
Lanczos-2 coefficient generators are implemented separately. You can select the algorithm from the
mask.

open_system([modelname '/imresize(downsample)/coeffi_gen'],'force');

The resize_process_element subsystems multiply the coefficients with each pixel component by using
a separable filter in vertical order and then in horizontal order. The trim_0_1 subsystem ensures the
result is between 0 and 1.

open_system([modelname '/imresize(downsample)/resize_process_element_H'],'force');

2 HDL-Optimized Algorithm Design

2-176

Resource Usage

These tables show the resource usage for the imresize(downsample) subsystem with 240p video
input, and do not include the lowpass filter or the Pixel Stream FIFO. The design was synthesized to
achieve a clock frequency of 150 MHz.

This table shows the resources for each of the three algorithms when downsampled in the HSV
colorspace.

This table shows the resources for each of the three algorithms when downsampled in the RGB
colorspace.

References

[1] Keys, R. "Cubic Convolution Interpolation for Digital Image Processing." IEEE Transactions on
Acoustics, Speech, and Signal Processing 29, no. 6 (December 1981): 1153-60. https://doi.org/
10.1109/TASSP.1981.1163711.

 Image Resize

2-177

https://doi.org/10.1109/TASSP.1981.1163711
https://doi.org/10.1109/TASSP.1981.1163711

[2] Smith, Alvy Ray. "Color Gamut Transform Pairs." In Proceedings of the 5th Annual Conference on
Computer Graphics and Interactive Techniques - SIGGRAPH '78, 12-19. Not Known: ACM Press,
1978. https://doi.org/10.1145/800248.807361.

2 HDL-Optimized Algorithm Design

2-178

https://doi.org/10.1145/800248.807361

Fog Rectification
This example shows how to remove fog from images captured under foggy conditions. The algorithm
is suitable for FPGAs.

Fog rectification is an important preprocessing step for applications in autonomous driving and object
recognition. Images captured in foggy and hazy conditions have low visibility and poor contrast.
These conditions can lead to poor performance of vision algorithms performed on foggy images. Fog
rectification improves the quality of the input images to such algorithms.

This example shows a streaming fixed-point implementation of the fog rectification algorithm that is
suitable for deployment to hardware.

To improve the foggy input image, the algorithm performs fog removal and then contrast
enhancement. The diagram shows the steps of both these operations.

This example takes a foggy RGB image as input. To perform fog removal, the algorithm estimates the
dark channel of the image, calculates the airlight map based on the dark channel, and refines the
airlight map by using filters. The restoration stage creates a defogged image by subtracting the
refined airlight map from the input image.

Then, the Contrast Enhancement stage assesses the range of intensity values in the image and uses
contrast stretching to expand the range of values and make features stand out more clearly.

Fog Removal

There are four steps in performing fog removal.

1. Dark Channel Estimation: The pixels that represent the non-sky region of an image have low
intensities in at least one color component. The channel formed by these low intensities is called the
dark channel. In a normalized, fog-free image, the intensity of dark channel pixels is very low, nearly
zero. In a foggy image, the intensity of dark channel pixels is high, because they are corrupted by fog.
So, the fog removal algorithm uses the dark channel pixel intensities to estimate the amount of fog.

 Fog Rectification

2-179

The algorithm estimates the dark channel by finding the pixel-wise minimum across all
three components of the input image where .

2. Airlight Map Calculation: The whiteness effect in an image is known as airlight. The algorithm
calculates the airlight map from the dark channel estimate by multiplying by a haze factor, , that
represents the amount of haze to be removed. The value of is between 0 and 1. A higher value
means more haze will be removed from the image.

3. Airlight Map Refinement: The algorithm smoothes the airlight image from the previous stage by
using a Bilateral Filter block. This smoothing strengthens the details of the image. The refined image
is referred to as .

4. Restoration: To reduce over-smoothing effects, this stage corrects the filtered image using these
equations. The constant, , represents the mid-line of changing the dark regions of the airlight map
from dark to bright values. The example uses an empirically derived value of .

The algorithm then subtracts the airlight map from the input foggy image and multiplies by the factor

.

Contrast Enhancement

There are five steps in contrast enhancement.

1. RGB to Gray Conversion: This stage converts the defogged RGB image, , from the
fog removal algorithm into a grayscale image, .

2. Histogram Calculation: This stage uses the Histogram block to count the number of pixels falling
in each intensity level from 0 to 255.

3. Histogram Normalization: The algorithm normalizes the histogram values by dividing them by
the input image size.

4. CDF Calculation: This stage computes the cumulative distribution function (CDF) of the
normalized histogram bin values by adding them to the sum of the previous histogram bin values.

5. Contrast Stretching: Contrast stretching is an image enhancement technique that improves the
contrast of an image by stretching the range of intensity values to fill the entire dynamic range. When
dynamic range is increased, details in the image are more clearly visible.

5a. i1 and i2 calculation: This step compares the CDF values with two threshold levels. In this
example, the thresholds are 0.05 and 0.95. This calculation determines which pixel intensity values
align with the CDF thresholds. These values determine the intensity range for the stretching
operation.

2 HDL-Optimized Algorithm Design

2-180

5b. T calculation: This step calculates the stretched pixel intensity values to meet the desired output
intensity values, and .

 is 10% of maximum output intensity floor(10*255/100) for uint8 input.

 is 90% of maximum output intensity floor(90*255/100) for uint8 input.

T is a 256-element vector divided into segments , , and . The segment elements are computed
from the relationship between the input intensity range and the desired output intensity range.

 and represent two pixel intensities in the input image's range and and represent two pixel
intensities in the rectified output image's range.

These equations show the how the elements in T are calculated.

5c. Replace intensity values: This step converts the pixel intensities of the defogged image to the
stretched intensity values. Each pixel value in the defogged image is replaced with the corresponding
intensity in T.

HDL Implementation

The example model implements the algorithm using a steaming pixel format and fixed-point blocks
from Vision HDL Toolbox. The serial interface mimics a real time system and is efficient for hardware
designs because less memory is required to store pixel data for computation. The serial interface also
allows the design to operate independently of image size and format and makes it more resilient to
timing errors. Fixed-point data types use fewer resources and give better performance on FPGA. The
necessary variables for the example are initialized in the InitFcn callback.

 Fog Rectification

2-181

The FogImage block imports the input image to the model. The Frame To Pixels block converts the
input frames to a pixel stream of uint8 values and a pixelcontrol bus. The Pixels To Frame block
converts the pixel stream back to image frames. The hdlInputViewer subsystem and hdlOutputViewer
subsystem show the foggy input image and the defogged enhanced output image, respectively. The
ImageBuffer subsystem stores the defogged image so the Contrast Enhancement stages can read it as
needed.

The FogRectification subsystem includes the fog removal and contrast enhancement algorithms,
implemented with fixed-point datatypes.

In the FogRemoval subsystem, a Minimum block named DarkChannel calculates the dark channel
intensity by finding the minimum across all three components. Then a Bilateral Filter block refines
the dark channel results. The filter block has the spatial standard deviation set to 2 and the intensity
standard deviation set to 0.5. These parameters are used to derive the filter coefficients. The bit
width of the output from filter stage is the same as that of the input.

Next, the airlight image is calculated by multiplying the refined dark channel with a haze factor, 0.9.
Multiplying by this factor after the bilateral filter avoids precision loss that would occur from
truncating to the maximum 16-bit input size of the bilateral filter.

The Restoration subsystem removes the airlight from the image and then scales the image to prevent
over-smoothing. The Pixel Stream Aligner block aligns the input pixel stream with the airlight image
before subtraction. The scale factor, , is found from the midpoint of the difference between the
original image and the image with airlight removed. The Restoration subsystem returns a defogged

2 HDL-Optimized Algorithm Design

2-182

image that has low contrast. So, contrast enhancement must be performed on this image to increase
the visibility.

The output from the FogRemoval subsystem is stored in the Image Buffer. The ContrastEnhancement
subsystem asserts a pop signal to read the frame back from the buffer.

The ContrastEnhancement subsystem uses the Color Space Converter block to convert the RGB
defogged image to a grayscale image. Then the Histogram block computes the histogram of pixel
intensity values. When the histogram is complete, the block generates a readRdy signal. Then the
HistNormAndCDFCalculation subsystem normalizes the histogram values and computes the CDF.

The i1Andi2Calculation subsystem computes the and values that describe the input intensity
range. Then the TCalculation subsystem returns the list of target output intensity values. These 256
values are written into a lookup table. The logic in the Contrast Stretching-LUT area generates a pop
signal to read the pixel intensities of the defogged image from the Image Buffer, and feeds these
values as read addresses to the LUT. The LUT returns the corresponding stretched intensity values
defined in T to replace the pixel values in the defogged image.

 Fog Rectification

2-183

The Image Buffer subsystem contains two options for modeling the connection to external memory. It
is a variant subsystem where you can select between the BehavioralMemory subsystem and the
“Model Frame Buffer Interface” (Vision HDL Toolbox Support Package for Xilinx Zynq-Based
Hardware) block.

Use the BehavioralMemory subsystem if you do not have the support package mentioned below. This
block contains HDL FIFO blocks. The BehavioralMemory returns the stored frame when it receives a
pop request signal. The pop request to BehavioralMemory must be high for every row of the frame.

2 HDL-Optimized Algorithm Design

2-184

The Video Frame Buffer block requires the Vision HDL Toolbox Support Package for Xilinx Zynq-
Based Hardware™. With the proper reference design, the support package can map this block to an
AXI-Stream VDMA buffer on the board. This frame buffer returns the stored frame when it receives
the popVB request signal. The pop request to this block must be high only one cycle per frame.

The inputs to the Image Buffer subsystem are the pixel stream and control bus generated after fog
removal. The pixel stream is fetched during the Contrast Enhancement operation, after the stretched
intensities (T) are calculated.

Simulation and Results

This example uses an RGB 240-by-320 pixel input image. Both the input pixels and the enhanced
output pixels use the uint8 data type. This design does not have multipixel support.

The figure shows the input and the enhanced output images obtained from the FogRectification
subsystem.

You can generate HDL code for the FogRectification subsystem. An HDL Coder™ license is required
to generate HDL code. This design was synthesized for the Intel® Arria® 10 GX (115S2F45I1SG)
FPGA. The table shows the resource utilization. The HDL design achieves a clock rate of over 200
MHz.

% ===
% |Model Name || FogRectificationHDL ||
% ===
% |Input Image Resolution || 320 x 240 ||
% |ALM Utilization || 10994 ||
% |Total Registers || 20632 ||
% |Total RAM Blocks || 67 ||
% |Total DSP Blocks || 39 ||
% ===

 Fog Rectification

2-185

Blob Analysis
This example shows how to implement a single-pass 8-way connected- component labeling algorithm
and perform blob analysis.

Blob analysis is a computer vision framework for detection and analysis of connected pixels called
blobs. This algorithm can be challenging to implement in a streaming design because it usually
involves two or more passes through the image. A first pass performs initial labeling, and additional
passes connect any blobs not labeled correctly on the first pass. Streaming designs use a single-pass
algorithm to apply and merge labels in hardware and store blob statistics in a RAM. This example has
an output stage in software that reads the RAM results and overlays them onto the input video. This
example labels blobs, and assigns each blob a unique identifier. Each blob is drawn in a different
color in the output image. The example also computes the centroid, bounding box, and area of up to
1024 labeled blobs. The model can support up to 1080p@60 video.

Overview

The example model supports hardware-software co-design. The BlobDetector subsystem is the
hardware part of the design, and supports HDL code generation. In a single pass, this subsystem
labels each pixel in the incoming pixel stream, merges connected areas, and computes the centroid,
area, and bounding box for each blob. The output of the subsystem is a stream of labeled pixels. The
subsystem stores the blob statistics in a RAM. When the blob analysis is complete, the subsystem
asserts the data_ready output port to indicate that the blob statistics are ready to be read.

Logic external to the subsystem reads the statistics one at a time from the BlobDetector RAM by
using the blobIndex input port as an address. This external logic represents the software part of the
design, and does not support HDL code generation. This part of the design reads the centroid, area,
and bounding box of each blob, compiles them into vectors for use by the Overlay subsystem, and
displays the blob statistics.

The BlobDetector subsystem provides these configuration ports that can be mapped to AXI registers
for real-time software control.

• GradThresh: Threshold used to create the intensity image.
• AreaThresh: Number of pixels that define a blob. The default setting of 1 means that all blobs are

processed.
• CloseOp: Whether morphological closing is performed prior to labeling and analysis. Closing can

be useful after thresholding to fill any introduced holes. By default, this signal is high and enables
closing. If you disable closing, the darker coin is detected as two blobs rather than a single
connected component.

• VideoMode: Pixel stream returned by the subsystem. You can select the input video (0), labeled
pixels (1), or intensity video after thresholding (2). You can use these different video views for
debugging.

The BlobDetector subsystem returns the output video with associated control signals, and the
bounding box, area, and centroid for each requested blobIndex. The subsystem also has these output
signals to help with debugging.

• index_o: Index of the blob currently returning statistics.
• num_o: Number of blobs that meet the area threshold.
• totalNum_o: Total number of blobs detected in the current frame. By comparing num_o and

totalNum_o, you can fine-tune the input area threshold.

2 HDL-Optimized Algorithm Design

2-186

• data_ready_o: Indicates when the blob statistics for the current frame are ready to be read from
the RAM. In a hardware-software co-design implementation, you can map this signal to an AXI
register, and the software can poll the register value to determine when to start reading the
statistics.

Blob Detector

The BlobDetector subsystem performs connected component labeling and analysis in a single pass
over the frame. At the top level, the subsystem contains the CCA_Algorithm subsystem and a cache
for the results. The CCA_Algorithm subsystem performs labeling, the calculation of blob statistics,
and blob merging.

 Blob Analysis

2-187

Labeling Algorithm

The labelandmerge MATLAB Function block performs 8-way pixel labeling relative to the current
pixel. The possible labels are: previous label, top label, top-left label, and top-right label. The function
assigns the current pixel an existing label in order of precedence. If no labels exist, and the pixel is a
foreground pixel, then the function assigns a new label to the current pixel by incrementing the label
counter. The function forms a labeling window as shown in the diagram by streaming in the current
pixel, storing the previous label in a register, and storing the previous line of pixel labels in a RAM.
The labels identified by labelandmerge are streamed out of the block as they are identified. For
details of the merge operation, see the Merge Logic section.

2 HDL-Optimized Algorithm Design

2-188

Blob Statistics Calculation

The cca subsystem computes the bounding box, area, and centroid of each blob. This operation uses a
set of accumulators and RAMs.

The area_accum subsystem increments the area of the blob represented by each detected label by
incrementing a RAM address corresponding to the label.

The x_accum and y_accum subsystems accumulate the xpos and ypos values from the input ports.
The xpos and ypos values are the coordinates of the pixel in the input frame. Using the area values,
and the accumulated coordinates, the centroid is calculated from xaccum/area and yaccum/area.
This calculation uses a single-precision reciprocal for 1/area and then multiplies that reciprocal by
xaccum and yaccum to find the centroid coordinates. Using a native floating-point reciprocal enables
high precision and maintains high dynamic range. When you generate HDL code, the coder
implements the reciprocal using fixed-point logic rather than requiring floating-point resources on
the FPGA. For more information, see “Getting Started with HDL Coder Native Floating-Point
Support” (HDL Coder).

The bbox_store subsystem calculates the bounding box. The subsystem calculates the top-left
coordinates, width, and height of the box by comparing the coordinates for each label against the
previously cached coordinates.

Merge Logic

During the labeling step, each pixel is examined using only the current line and previous line of label
values. This narrow focus means that labels can need correction after further parts of the blob are
identified. Label correction can be a challenge for both frame-based and pixel-streaming
implementations. The diagrams show two examples of when initial labeling requires correction.

The diagram on the left shows the current pixel connecting two regions through the previous label
and top-right label. The diagram on the right shows the current pixel connecting two regions through
the previous label and top label. The current pixel is the first location at which the algorithm detects
that a merge is required. When the algorithm detects a merge, that pixel is flagged for correction. In
both diagrams, the pixels are all part of the same blob and so each pixel must be assigned the same
label, 1.

The labelandmerge MATLAB Function block checks for merges and returns a uint32 value that
contains the two merged labels. The MergeQueue subsystem stores any merges that occur on the
current line. At the end of each line, the cca subsystem reads the MergeQueue values and corrects

 Blob Analysis

2-189

the area, centroid, and bounding box values in the accumulators. The accumulated values for the two
merged labels are added together and assigned to a single label. The input to each accumulator
subsystem has a 2:1 multiplexer that enables the accumulator to be incremented either when a new
label is found, or when a merge occurs.

Output Display

At the end of each frame, the model updates two video displays. The Results On Image video display
shows the input image with the bounding boxes (green rectangles) and centroids (red crosses)
overlaid. The Label Image video display shows the results of the labeling stage before merging. In the
Label Image display, the top of each coin has a different label than the rest of the coin. The merge
stage corrects this behavior by merging the two labels into one. The bounding box returned for each
blob shows that each coin was detected as a single label.

Implementation Results

To check and generate the HDL code referenced in this example, you must have the HDL Coder™
product. To generate the HDL code, use this command.

makehdl('BlobAnalysisHDL/BlobDetector')

2 HDL-Optimized Algorithm Design

2-190

The generated code was synthesized for a target of Xilinx ZC706 SoC. The design met a 200 MHz
timing constraint. The design uses very few hardware resources, as shown in the table.

T =

 5x2 table

 Resource Usage
 ________ ____________

 DSP48 7 (0.78%)
 Register 4827 (1.1%)
 LUT 3800 (1.74%)
 Slice 1507 (2.67%)
 BRAM 25.5 (4.68%)

See Also

More About
• “Hardware-Software Co-Design Workflow for SoC Platforms” (HDL Coder)

 Blob Analysis

2-191

Pixel-Streaming Design in MATLAB
This example shows how to design pixel-stream video processing algorithms using Vision HDL
Toolbox™ objects in the MATLAB® environment and generate HDL code from the design.

This example also tests the design using a small thumbnail image to reduce simulation time. To
simulate larger images, such as 1080p video format, use MATLAB Coder™ to accelerate the
simulation. See “Accelerate a Pixel-Streaming Design Using MATLAB Coder”.

Test Bench

In the test bench PixelStreamingDesignHDLTestBench.m, the videoIn object reads each frame
from a video source, and the scaler object reduces this frame from 240p to a thumbnail size for the
sake of simulation speed. This thumbnail image is passed to the frm2pix object, which converts the
full image frame to a stream of pixels and control structures. The function
PixelStreamingDesignHDLDesign.m is then called to process one pixel (and its associated control
structure) at a time. After we process the entire pixel-stream and collect the output stream, the
pix2frm object converts the output stream to full-frame video. The viewer object displays the output
and original images side-by-side.

The workflow above is implemented in the following lines of
PixelStreamingDesignHDLTestBench.m.

 ...
 for f = 1:numFrm
 frmFull = step(videoIn); % Get a new frame
 frmIn = step(scaler,frmFull); % Reduce the frame size

 [pixInVec,ctrlInVec] = step(frm2pix,frmIn);
 for p = 1:numPixPerFrm
 [pixOutVec(p),ctrlOutVec(p)] = PixelStreamingDesignHDLDesign(pixInVec(p),ctrlInVec(p));
 end
 frmOut = step(pix2frm,pixOutVec,ctrlOutVec);

 step(viewer,[frmIn frmOut]);
 end
 ...

Both frm2pix and pix2frm are used to convert between full-frame and pixel-stream domains. The
inner for-loop performs pixel-stream processing. The rest of the test bench performs full-frame
processing (i.e., videoIn, scaler, and viewer).

Before the test bench terminates, frame rate is displayed to illustrate the simulation speed.

Pixel-Stream Design

The function defined in PixelStreamingDesignHDLDesign.m accepts a pixel stream and five
control signals, and returns a modified pixel stream and control signals. For more information on the
streaming pixel protocol used by System objects from the Vision HDL Toolbox, see “Streaming Pixel
Interface” on page 1-2.

In this example, the function contains the Gamma Corrector System object.

The focus of this example is the workflow, not the algorithm design itself. Therefore, the design code
is quite simple. Once you are familiar with the workflow, it is straightforward to implement advanced

2 HDL-Optimized Algorithm Design

2-192

video algorithms by taking advantage of the functionality provided by the System objects from Vision
HDL Toolbox.

Simulate the Design

Simulate the design with the test bench prior to HDL code generation to make sure there are no
runtime errors.

PixelStreamingDesignHDLTestBench;

10 frames have been processed in 32.12 seconds.
Average frame rate is 0.31 frames/second.

The viewer displays the original video on the left, and the output on the right. One can clearly see
that the gamma operation results in a brighter image.

Enter the following command to create a new HDL Coder™ project,

coder -hdlcoder -new PixelStreamingDesignProject

Then, add the file PixelStreamingDesignHDLDesign.m to the project as the MATLAB Function
and PixelStreamingDesignHDLTestBench.m as the MATLAB Test Bench.

Refer to “Get Started with MATLAB to HDL Workflow” (HDL Coder) for a tutorial on creating and
populating MATLAB HDL Coder projects.

Launch the Workflow Advisor. In the Workflow Advisor, right-click the 'Code Generation' step. Choose
the option 'Run to selected task' to run all the steps from the beginning through HDL code
generation.

Examine the generated HDL code by clicking the links in the log window.

 Pixel-Streaming Design in MATLAB

2-193

Enhanced Edge Detection from Noisy Color Video
This example shows how to develop a complex pixel-stream video processing algorithm, accelerate its
simulation using MATLAB® Coder™, and generate HDL code from the design. The algorithm
enhances the edge detection from noisy color video.

You must have a MATLAB Coder license to run this example.

This example builds on the “Pixel-Streaming Design in MATLAB” on page 2-192 and the “Accelerate a
Pixel-Streaming Design Using MATLAB Coder” examples.

Test Bench

In the EnhancedEdgeDetectionHDLTestBench.m file, the videoIn object reads each frame from a
color video source, and the imnoise function adds salt and pepper noise. This noisy color image is
passed to the frm2pix object, which converts the full image frame to a stream of pixels and control
structures. The function EnhancedEdgeDetectionHDLDesign.m is then called to process one pixel
(and its associated control structure) at a time. After we process the entire pixel-stream and collect
the output stream, the pix2frm object converts the output stream to full-frame video. A full-frame
reference design EnhancedEdgeDetectionHDLReference.m is also called to process the noisy
color image. Its output is compared with that of the pixel-stream design. The function
EnhancedEdgeDetectionHDLViewer.m is called to display video outputs.

The workflow above is implemented in the following lines of
EnhancedEdgeDetectionHDLTestBench.m.

...
frmIn = zeros(actLine,actPixPerLine,3,'uint8');
for f = 1:numFrm
 frmFull = step(videoIn); % Get a new frame
 frmIn = imnoise(frmFull,'salt & pepper'); % Add noise

 % Call the pixel-stream design
 [pixInVec,ctrlInVec] = step(frm2pix,frmIn);
 for p = 1:numPixPerFrm
 [pixOutVec(p),ctrlOutVec(p)] = EnhancedEdgeDetectionHDLDesign(pixInVec(p,:),ctrlInVec(p));
 end
 frmOut = step(pix2frm,pixOutVec,ctrlOutVec);

 % Call the full-frame reference design
 [frmGray,frmDenoise,frmEdge,frmRef] = visionhdlenhancededge_reference(frmIn);

 % Compare the results
 if nnz(imabsdiff(frmRef,frmOut))>20
 fprintf('frame %d: reference and design output differ in more than 20 pixels.\n',f);
 return;
 end

 % Display the results
 EnhancedEdgeDetectionHDLViewer(actPixPerLine,actLine,[frmGray frmDenoise uint8(255*[frmEdge frmOut])],[frmFull frmIn]);
 end
 ...

Since frmGray and frmDenoise are uint8 data type while frmEdge and frmOut are logical,
uint8(255x[frmEdge frmOut]) maps logical false and true to uint8(0) and uint8(255), respectively,
so that matrices can be concatenated.

2 HDL-Optimized Algorithm Design

2-194

Both frm2pix and pix2frm are used to convert between full-frame and pixel-stream domains. The
inner for-loop performs pixel-stream processing. The rest of the test bench performs full-frame
processing.

Before the test bench terminates, frame rate is displayed to illustrate the simulation speed.

For the functions that do not support C code generation, such as tic, toc, imnoise, and fprintf in
this example, use coder.extrinsic to declare them as extrinsic functions. Extrinsic functions are
excluded from MEX generation. The simulation executes them in the regular interpreted mode. Since
imnoise is not included in the C code generation process, the compiler cannot infer the data type
and size of frmIn. To fill in this missing piece, we add the statement frmIn =
zeros(actLine,actPixPerLine,3,'uint8') before the outer for-loop.

Pixel-Stream Design

The function defined in EnhancedEdgeDetectionHDLDesign.m accepts a pixel stream and a
structure consisting of five control signals, and returns a modified pixel stream and control structure.
For more information on the streaming pixel protocol used by System objects from the Vision HDL
Toolbox, see the “Streaming Pixel Interface” on page 1-2.

In this example, the rgb2gray object converts a color image to grayscale, medfil removes the salt
and pepper noise. sobel highlights the edge. Finally, the mclose object performs morphological
closing to enhance the edge output. The code is shown below.

[pixGray,ctrlGray] = step(rgb2gray,pixIn,ctrlIn); % Convert RGB to grayscale
[pixDenoise,ctrlDenoise] = step(medfil,pixGray,ctrlGray); % Remove noise
[pixEdge,ctrlEdge] = step(sobel,pixDenoise,ctrlDenoise); % Detect edges
[pixClose,ctrlClose] = step(mclose,pixEdge,ctrlEdge); % Apply closing

Full-Frame Reference Design

When designing a complex pixel-stream video processing algorithm, it is a good practice to develop a
parallel reference design using functions from the Image Processing Toolbox™. These functions
process full image frames. Such a reference design helps verify the implementation of the pixel-
stream design by comparing the output image from the full-frame reference design to the output of
the pixel-stream design.

The function EnhancedEdgeDetectionHDLReference.m contains a similar set of four functions as
in the EnhancedEdgeDetectionHDLDesign.m. The key difference is that the functions from Image
Processing Toolbox process full-frame data.

Due to the implementation difference between edge function and visionhdl.EdgeDetector
System object, reference and design output are considered matching if frmOut and frmRef differ in
no greater than 20 pixels.

Create MEX File and Simulate the Design

Generate and execute the MEX file.

codegen('EnhancedEdgeDetectionHDLTestBench');

Code generation successful.

EnhancedEdgeDetectionHDLTestBench_mex;

frame 1: reference and design output differ in more than 20 pixels.

 Enhanced Edge Detection from Noisy Color Video

2-195

The upper video player displays the original color video on the left, and its noisy version after adding
salt and pepper noise on the right. The lower video player, from left to right, represents: the
grayscale image after color space conversion, the de-noised version after median filter, the edge
output after edge detection, and the enhanced edge output after morphological closing operation.

Note that in the lower video chain, only the enhanced edge output (right-most video) is generated
from pixel-stream design. The other three are the intermediate videos from the full-frame reference
design. To display all of the four videos from the pixel-stream design, you would have written the
design file to output four sets of pixels and control signals, and instantiated three more
visionhdl.PixelsToFrame objects to convert the three intermediate pixel streams back to frames.
For the sake of simulation speed and the clarity of the code, this example does not implement the
intermediate pixel-stream displays.

HDL Code Generation

To create a new project, enter the following command in the temporary folder

coder -hdlcoder -new EnhancedEdgeDetectionProject

Then, add the file 'EnhancedEdgeDetectionHDLDesign.m' to the project as the MATLAB Function and
'EnhancedEdgeDetectionHDLTestBench.m' as the MATLAB Test Bench.

Refer to “Get Started with MATLAB to HDL Workflow” (HDL Coder) for a tutorial on creating and
populating MATLAB HDL Coder projects.

Launch the Workflow Advisor. In the Workflow Advisor, right-click the 'Code Generation' step. Choose
the option 'Run to selected task' to run all the steps from the beginning through HDL code
generation.

Examine the generated HDL code by clicking the links in the log window.

2 HDL-Optimized Algorithm Design

2-196

Code Generation and Deployment

3

Accelerate a MATLAB Design with MATLAB Coder
Vision HDL Toolbox designs in MATLAB must call one or more System objects for every pixel. This
serial processing is efficient in hardware, but is slow in simulation. One way to accelerate simulations
of these objects is to simulate using generated C code rather than the MATLAB interpreted language.

Code generation accelerates simulation by using constants for the sizes and data types of variables
inside the function. This process removes the overhead of the interpreted language checking for size
and data type in every line of code. You can compile a video processing algorithm and test bench into
MEX functions, and use the resulting MEX file to speed up the simulation.

To generate C code, you must have a MATLAB Coder™ license.

See “Accelerate a Pixel-Streaming Design Using MATLAB Coder”.

3 Code Generation and Deployment

3-2

HDL Code Generation from Vision HDL Toolbox
In this section...
“What Is HDL Code Generation?” on page 3-3
“HDL Code Generation Support in Vision HDL Toolbox” on page 3-3
“Streaming Pixel Interface in HDL” on page 3-3

What Is HDL Code Generation?
You can use MATLAB and Simulink for rapid prototyping of hardware designs. Vision HDL Toolbox
blocks and System objects, when used with HDL Coder™, provide support for HDL code generation.
HDL Coder tools generate target-independent synthesizable Verilog® and VHDL® code for FPGA
programming or ASIC prototyping and design.

HDL Code Generation Support in Vision HDL Toolbox
Most blocks and objects in Vision HDL Toolbox support HDL code generation.

The following blocks and objects are for simulation only and are not supported for HDL code
generation :

• Frame To Pixels (visionhdl.FrameToPixels)
• Pixels To Frame (visionhdl.PixelsToFrame)
• FIL Frame To Pixels (visionhdl.FILFrameToPixels)
• FIL Pixels To Frame (visionhdl.FILPixelsToFrame)
• Measure Timing (visionhdl.MeasureTiming)

Streaming Pixel Interface in HDL
The streaming pixel bus and structure data type used by Vision HDL Toolbox blocks and System
objects is flattened into separate signals in HDL.

In VHDL, the interface is declared as:

 PORT(clk : IN std_logic;
 reset : IN std_logic;
 enb : IN std_logic;
 in0 : IN std_logic_vector(7 DOWNTO 0); -- uint8
 in1_hStart : IN std_logic;
 in1_hEnd : IN std_logic;
 in1_vStart : IN std_logic;
 in1_vEnd : IN std_logic;
 in1_valid : IN std_logic;
 out0 : OUT std_logic_vector(7 DOWNTO 0); -- uint8
 out1_hStart : OUT std_logic;
 out1_hEnd : OUT std_logic;
 out1_vStart : OUT std_logic;
 out1_vEnd : OUT std_logic;
 out1_valid : OUT std_logic
);

 HDL Code Generation from Vision HDL Toolbox

3-3

In Verilog, the interface is declared as:

 input clk;
 input reset;
 input enb;
 input [7:0] in0; // uint8
 input in1_hStart;
 input in1_hEnd;
 input in1_vStart;
 input in1_vEnd;
 input in1_valid;
 output [7:0] out0; // uint8
 output out1_hStart;
 output out1_hEnd;
 output out1_vStart;
 output out1_vEnd;
 output out1_valid;

3 Code Generation and Deployment

3-4

Blocks and System Objects Supporting HDL Code Generation
Most blocks and objects in Vision HDL Toolbox are supported for HDL code generation. For
exceptions, see “HDL Code Generation Support in Vision HDL Toolbox” on page 3-3. This page helps
you find blocks and objects supported for HDL code generation in other MathWorks® products.

Blocks
To create a library of HDL-supported blocks from all your installed products, enter hdllib at the
MATLAB command line. This command requires an HDL Coder license.

You can also view blocks that are supported for HDL code generation in documentation by filtering
the block reference list. Click Blocks in the blue bar at the top of the Help window, then select the
HDL code generation check box at the bottom of the left column. The blocks are listed in their
respective products. You can use the table of contents in the left column to navigate between
products and categories.

Refer to the "Extended Capabilities > HDL Code Generation" section of each block page for block
implementations, properties, and restrictions for HDL code generation.

 Blocks and System Objects Supporting HDL Code Generation

3-5

System Objects
You can view System objects that are supported for HDL code generation in documentation by
filtering the functions reference list. Click Functions in the blue bar at the top of the Help window,
then select the HDL code generation check box at the bottom of the left column. The System
objects are listed in their respective products. You can use the table of contents in the left column to
navigate between products and categories.

Refer to the "Extended Capabilities > HDL Code Generation" section of each block page for
restrictions for HDL code generation.

3 Code Generation and Deployment

3-6

Generate HDL Code from Simulink

Introduction
This page shows you how to generate HDL code from the design described in “Design Video
Processing Algorithms for HDL in Simulink”. You can generate HDL code from the HDL Algorithm
subsystem in the model.

To generate HDL code, you must have an HDL Coder license.

Prepare Model
Run the visionhdlsetup function to configure the model for HDL code generation. If you started
your design using the Vision HDL Toolbox Simulink model template, your model is already configured
for HDL code generation.

Generate HDL Code
Right-click the HDL Algorithm block, and select HDL Code > Generate HDL from subsystem to
generate HDL using the default settings. The output log of this operation is shown in the MATLAB
Command Window, along with the location of the generated files.

To change code generation options, use the HDL Code Generation section of Simulink
Configuration Parameters. For guidance through the HDL code generation process, or to select a
target device or synthesis tool, right-click on the HDL Algorithm block, and select HDL Code > HDL
Workflow Advisor.

Alternatively, from the MATLAB Command Window, you can call:

makehdl([modelname '/HDL Algorithm'])

Generate HDL Test Bench
You can select options to generate a test bench in Simulink Configuration Parameters or in HDL
Workflow Advisor.

Alternatively, to generate an HDL test bench from the command line, call:

makehdltb([modelname '/HDL Algorithm'])

See Also
Functions
makehdl | makehdltb

Related Examples
• “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder)
• “Choose a Test Bench for Generated HDL Code” (HDL Coder)

 Generate HDL Code from Simulink

3-7

Generate HDL Code from MATLAB
This page shows you how to generate HDL code from the design in the “Design a Hardware-Targeted
Image Filter in MATLAB” example.

To generate HDL code, you must have an HDL Coder license.

Create an HDL Coder Project
Start from a working folder that contains a function and a test bench MATLAB script file. You can use
this openExample command to get a working folder with the files from the “Design a Hardware-
Targeted Image Filter in MATLAB” example.

openExample('visionhdl/VisionHDLMATLABTutorialExample')

Open the HDL Coder app and create a new project.

coder -hdlcoder -new vht_matlabhdl_ex

In the HDL Code Generation pane, add the function file HDLTargetedDesign.m and the test
bench file VisionHDLMATLABTutorialExample.m to the project.

Click next to the signal names under MATLAB Function to define the data types for the input and
output signals of the function. The control signals are a struct of five logical scalars, enter their
names as shown in the figure. The pixel data type is uint8. The pixel input is a scalar.

3 Code Generation and Deployment

3-8

Generate HDL Code
1 Click Workflow Advisor to open the advisor.
2 Set Fixed-point conversion to Keep original types.
3 Click HDL Code Generation to view the HDL code generation options.
4 On the Target tab, set Language to Verilog or VHDL.
5 Also on the Target tab, select Generate HDL.
6 On the Coding Style tab, select Include MATLAB source code as comments and Generate

report to generate a code generation report with comments and traceability links.
7 Click Run to generate the HDL design with reports.
8 Under HDL Verification, open Verify with HDL Test Bench and select Generate HDL Test

Bench.
9 Click Run to generate the HDL test bench.

Examine the log window and click the links to view the generated code and the reports. You can run
the generated test bench in your HDL simulator, or integrate the generated HDL code into a larger
design you already have.

See Also

Related Examples
• “Get Started with MATLAB to HDL Workflow” (HDL Coder)
• “Generate HDL Code from MATLAB Code Using the Command Line Interface” (HDL Coder)
• “HDL Code Generation for System Objects” (HDL Coder)
• “Pixel-Streaming Design in MATLAB” on page 2-192

 Generate HDL Code from MATLAB

3-9

Modeling External Memory
You can model external memory using features from Vision HDL Toolbox Support Package for Xilinx®

Zynq®-Based Hardware or SoC Blockset™. Both products provide models for a frame buffer or a
random access interface. They both also map your subsystem ports to physical AXI memory interfaces
when you generate HDL code and target a prototype board.

Vision HDL Toolbox Support Package for Xilinx Zynq-Based Hardware provides a simple model of the
memory interface. It does not model the timing of the interface. This level of modeling assists with
targeting a memory interface on hardware, but behavior can differ between the simulation and the
hardware. For more information, see “Model External Memory Interfaces” (Vision HDL Toolbox
Support Package for Xilinx Zynq-Based Hardware).

SoC Blockset provides library blocks to model a memory controller and multiple memory channels.
This model calculates and visualizes memory bandwidth, burst counts, and transaction latencies in
simulation. You can also model memory accesses from a processor as part of hardware-software co-
design. Use the SoC Builder app to generate code for FPGA and processor designs and load and run
the design on a board. You can also deploy an AXI memory interconnect monitor on your FPGA, which
can return memory transaction information for debugging and visualization in Simulink. This level of
modeling helps you verify throughput and latency requirements and enables modeling of multiple
memory consumers, including processor memory access. For more information, see “Memory” (SoC
Blockset).

3 Code Generation and Deployment

3-10

Frame Buffer
Vision HDL Toolbox Support Package for
Xilinx Zynq-Based Hardware

SoC Blockset

This figure shows part of the “Histogram
Equalization with Zynq-Based Hardware” (Vision
HDL Toolbox Support Package for Xilinx Zynq-
Based Hardware) example. The Video Frame
Buffer block accepts and returns the pixel
streaming interface used by Vision HDL Toolbox
blocks. It reads and returns an entire frame when
you set the pop signal to 1. To use this block in
your designs, copy it from the example model.

This figure shows part of the “Histogram
Equalization Using Video Frame Buffer” (SoC
Blockset) example. The example shows how to
use the Memory Channel and Memory Controller
library blocks to model a frame buffer and
additional memory consumers. You can use this
model to confirm that the memory interface
meets the throughput and latency requirements
of your design. You can measure the bandwidth
and transaction latency for each memory
consumer and check the measurements against
the total bandwidth available from the memory.
To model a frame buffer that supports the pixel
streaming interface used by Vision HDL Toolbox
blocks, configure the Channel type parameter of
the Memory Channel block as AXI4 Stream
Video Frame Buffer.

 Modeling External Memory

3-11

Random Access
Vision HDL Toolbox Support Package for
Xilinx Zynq-Based Hardware

SoC Blockset

This figure shows part of the “Image Rotation
with Zynq-Based Hardware” (Vision HDL Toolbox
Support Package for Xilinx Zynq-Based
Hardware) example. The External Memory block
reads and writes to any address in the memory. In
this case, rather than connecting the pixel stream
to the memory interface, your custom FPGA logic
must generate read and write transactions with
specific addresses. To use this block in your
designs, copy it from the example model.

This figure shows part of the “Random Access of
External Memory” (SoC Blockset) example. This
design uses a Memory Controller and two
Memory Channel blocks to implement a random-
access interface. In this case, rather than
connecting the pixel stream to the memory
interface, your custom FPGA logic must generate
read and write transactions with specific
addresses.

See Also
“Model External Memory Interfaces” (Vision HDL Toolbox Support Package for Xilinx Zynq-Based
Hardware) | “Memory” (SoC Blockset)

3 Code Generation and Deployment

3-12

Related Examples
• “Vertical Video Flipping Using External Memory” on page 3-30
• “Contrast Limited Adaptive Histogram Equalization with External Memory” on page 3-59

 Modeling External Memory

3-13

Deploy and Verify YOLO v2 Vehicle Detector on FPGA
This example shows how to deploy a you only look once (YOLO) v2 vehicle detector on FPGA and
verify the end-to-end application using MATLAB.

The end-to-end application includes preprocessing steps, image resize and normalization, followed by
a YOLO v2 vehicle detection network.

The example deploys the algorithm to a Xilinx® Zynq® Ultrascale+(TM) MPSoC ZCU102 board. Set
up the board's SD card using “Guided SD Card Set Up” (Deep Learning HDL Toolbox Support
Package for Xilinx FPGA and SoC Devices).

Introduction

A YOLO v2 vehicle detection application is composed of three main modules. The first module,
preprocessing, accepts the input image frame and performs image resize and normalization. In the
second module, the preprocessed data is consumed by the YOLO v2 vehicle detection network, which
internally comprises a feature extraction network followed by a detection network. In the third
module, the network output is postprocessed for identifying the strongest bounding boxes and the
resulting bounding box is overlaid on the input image. In this example, as shown in the block
diagram, the first two modules are deployed on the FPGA and the postprocessing is done in MATLAB.

This example shows how to:

1 Configure the deep learning processor and generate IP core.
2 Model the design under test (DUT) that includes preprocessing modules (resize and

normalization) and handshaking logic with the deep learning processor.
3 Generate and deploy bitstream to the FPGA.
4 Compile and deploy YOLO v2 deep learning network.
5 Verify the deployed YOLO v2 vehicle detector using MATLAB.

3 Code Generation and Deployment

3-14

Configure Deep Learning Processor and Generate IP Core

The deep learning processor IP core accesses the preprocessed input from the DDR memory,
performs the vehicle detection, and loads the output back into the memory. To generate a deep
learning processor IP core that has the required interfaces, create a deep learning processor
configuration by using the dlhdl.ProcessorConfig (Deep Learning HDL Toolbox) class. In
the processor configuration, set the InputRunTimeControl and OutputRunTimeControl
parameters. These parameters indicate the interface type for interfacing between the input and
output of the deep learning processor. To learn about these parameters, see “Interface with the Deep
Learning Processor IP Core” (Deep Learning HDL Toolbox). In this example, the deep learning
processor uses the register mode for input and output runtime control.

hPC = dlhdl.ProcessorConfig;
hPC.InputRunTimeControl = "register";
hPC.OutputRunTimeControl = "register";

Specify the TargetPlatform property of the processor configuration object as Generic Deep
Learning Processor. This option generates a custom generic deep learning processor IP core.

hPC.TargetPlatform = 'Generic Deep Learning Processor';

Use the setModuleProperty method to set the properties of the conv module of the deep learning
processor. These properties can be tuned based on the design choice to ensure that the design fits on
the FPGA. To learn more about these parameters, see setModuleProperty (Deep Learning HDL
Toolbox). In this example, LRNBlockGeneration is turned on and
SegmentationBlockGeneration is turned off to support YOLOv2 vehicle detection network.
ConvThreadNumber is set to 9.

hPC.setModuleProperty('conv','LRNBlockGeneration', 'on');
hPC.setModuleProperty('conv','SegmentationBlockGeneration', 'off');
hPC.setModuleProperty('conv','ConvThreadNumber',9);

This example uses the Xilinx ZCU102 board to deploy the deep learning processor. Use the
hdlsetuptoolpath function to add the Xilinx Vivado synthesis tool path to the system path.

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath','C:\Xilinx\Vivado\2020.2\bin\vivado.bat');

Use the dlhdl.buildProcessor function with the hPC object to generate the deep learning IP
core. It takes some time to generate the deep learning processor IP core.

dlhdl.buildProcessor(hPC);

The generated IP core contains a standard set of registers and the generated IP core report. The IP
core report is generated in the same folder as ip core with the name
testbench_ip_core_report.html.

 Deploy and Verify YOLO v2 Vehicle Detector on FPGA

3-15

IP core name and IP core folder are required in a subsequent step in 'Set Target Reference
Design' task of the IP core generation workflow of the DUT. The IP core report also has the address
map of the registers that are needed for handshaking with input and output of deep learning
processor IP core.

The registers InputValid, InputAddr, and InputSize contain the values of the corresponding
handshaking signals that are required to write the preprocessed frame into DDR memory. The
register InputNext is used by the DUT to pulse the inputNext signal after the data is written into
memory. These register addresses are setup in the helperSLYOLOv2PreprocessSetup.m script.
The other registers listed in the report are read/written using MATLAB. For more details on interface
signals, see the Design Processing Mode Interface Signals section of “Interface with the Deep
Learning Processor IP Core” (Deep Learning HDL Toolbox).

Model Design Under Test (DUT)

This section describes the design of the preprocessing modules (image resize and image
normalization) and the handshaking logic in a DUT.

open_system('YOLOv2PreprocessTestbench');

3 Code Generation and Deployment

3-16

The figure shows the top level view of the YOLOv2PreprocessTestbench.slx model. The InitFcn
callback of the model configures the required workspace variables for the model using
helperSLYOLOv2PreprocessSetup.m script. A Frame To Pixels block converts the input image
frame from the Input Image block to a pixel stream and pixelcontrol bus. The Pack subsystem
concatenates the R, G, B components of the pixel stream and the five control signals of the
pixelcontrol bus to form uint32 data. The packed data is fed to the YOLO v2 Preprocess DUT
for resizing and normalization. This preprocessed data is then written to the DDR using the
handshaking signals from deep learning IP core. The DDR memory and the deep learning processor
IP core are modeled as PL DDR and DL IP core subsystems. The model also includes a Verify
Output subsystem which logs the signals required for the verification of the preprocessed data being
written to memory using preprocessDUTVerify.m script.

open_system('YOLOv2PreprocessTestbench/YOLO v2 Preprocess DUT');

 Deploy and Verify YOLO v2 Vehicle Detector on FPGA

3-17

The YOLO v2 Preprocess DUT contains subsystems for preprocessing (resize and normalization)
and handshaking logic. In the YOLO v2 Preprocess Algorithm subsystem, the input pixel stream
is resized and rescaled as required by the deep learning network. This preprocessed frame is then
passed to the DL Handshake Logic Ext Mem subsystem to be written into the PL DDR. This
example models two AXI4 Master interfaces to write the preprocessed frame to the DDR memory and
to read and write the registers of deep learning IP Core.

open_system('YOLOv2PreprocessTestbench/YOLO v2 Preprocess DUT/YOLO v2 Preprocess Algorithm');

The YOLO v2 Preprocess Algorithm subsystem comprises of unpacking, resizing, and
normalization operations. The Unpack subsystem returns the packed input to the pixel stream and
pixelcontrol bus. The pixel stream is passed to the Resize subsystem for resizing to the

3 Code Generation and Deployment

3-18

dimensions expected by the deep learning network. The input image dimensions and the network
input dimensions are setup using helperSLYOLOv2PreprocessSetup.m script. The resized input is
passed to Normalization subsystem for rescaling the pixel values to [0,1] range. The resize and
normalization algorithms used in this example are described in the “Image Resize” on page 2-172 and
“Image Normalization Using External Memory” on page 3-47 examples respectively.

open_system('YOLOv2PreprocessTestbench/YOLO v2 Preprocess DUT/DL Handshake Logic Ext Mem');

The DL Handshake Logic Ext Mem subsystem contains the finite state machine (FSM) logic for
handshaking with DL IP and a subsystem to write the frame to DDR. The Read DL Registers
subsystem has the FSM logic to read the handshaking signals (InputValid, InputAddr, and InputSize)
from the DL IP core. The Write to DDR subsystem uses these handshaking signals to write the
preprocessed frame to the memory using AXI stream protocol. The output write control bus from the
DDR memory contains a signal wr_done which indicates that the frame write operation is done
successfully. The TriggerDLInputNext subsystem pulses the inputNext signal after the
preprocessed frame is written into the DDR to indicate to the DL IP core that the input data frame is
available for processing.

In the next section, the IP core is generated for the YOLO v2 Preprocess DUT subsystem and is
integrated into the reference design.

Generate and Deploy Bitstream to FPGA

This example uses the Deep Learning with Preprocessing Interface reference design that
is provided by the Vision HDL Toolbox™ Support Package for Xilinx® Zynq®-Based Hardware.

 Deploy and Verify YOLO v2 Vehicle Detector on FPGA

3-19

pathToRefDesign = fullfile(...
 matlabshared.supportpkg.getSupportPackageRoot,...
 "toolbox","shared","supportpackages","visionzynq","target",....
 "+visionzynq", "+ZCU102", "plugin_rd.m");
if (~exist(pathToRefDesign, 'file'))
 error(['This example requires you to download and install '...
 'Vision HDL Toolbox Support Package for Xilinx Zynq-Based Hardware']);
end

The reference design contains the ADI AXI DMA Controller to move the data from processor to FPGA
fabric. The data is sent from the ARM processing system, through the DMA controller and AXI4-
Stream interface, to the generated DUT Preprocessing IP core. The DUT contains two AXI Master
interfaces. One AXI interface is connected to the Deep Learning Processor IP core and the other is
connected to the DDR memory interface generator (MIG) IP.

Start the targeting workflow by right clicking the YOLO v2 Preprocess DUT subsystem and
selecting HDL Code > HDL Workflow Advisor.

• In step 1.1, select IP Core Generation workflow and the platform 'Xilinx Zynq Ultrascale+ MPSoC
ZCU102 Evaluation Kit'.

3 Code Generation and Deployment

3-20

• In step 1.2, the reference design is set to "Deep Learning with Preprocessing Interface". The DL
Processor IP name and the DL Processor IP location specify the name and location of the
generated deep learning processor IP core, and are obtained from the IP core report.

 Deploy and Verify YOLO v2 Vehicle Detector on FPGA

3-21

• In step 1.3, map the target platform interfaces to the input and output ports of the DUT.

3 Code Generation and Deployment

3-22

• AXI4-Stream Slave interface: The inputData and valid ports of the DUT are mapped to the
data and valid ports of the AXI4-Stream Slave interface respectively.

• AXI4-Lite Interface: The DUTProcstart register is mapped to the AXI4-Lite register. When this
register is written, it triggers the process of input handshaking logic. Choosing the AXI4-Lite
interface directs HDL Coder to generate a memory-mapped register in the FPGA fabric. You can
access this register from software running on the ARM processor.

• AXI4 Master DDR interface: The AXIWriteCtrlInDDR, AXIReadCtrlInDDR,
AXIReadDataDDR, AXIWriteCtrlOutDDR, AXIWriteDataDDR and AXIReadCtrlOutDDR ports
of DUT are mapped to AXI4 Master DDR interface. The Read Channel of the AXI4 Master DDR
interface is mapped to the AXI4 Master DDR Read interface, and the Write Channel of the AXI4
Master DDR interface is mapped to the AXI4 Master DDR Write interface. This interface is used
for the data transfer between the Preprocess DUT and the PL DDR. Using the Write Channel of
this interface, the preprocessed data is written to the PL DDR which can then be accessed by the
Deep Learning Processor IP.

• AXI4 Master DL interface: The AXIReadDataDL, AXIReadCtrlInDL, AXIWriteCtrlInDL,
AXIReadCtrlOutDL, AXIWriteDataDL and AXIWriteCtrlOutDL ports of DUT are mapped to
AXI4 Master DL interface. The Read Channel of the AXI4 Master DL interface is mapped to the
AXI4 Master DL Read interface, and the Write Channel of the AXI4 Master DL interface is
mapped to the AXI4 Master DL Write interface. This interface is used for the communication
between Preprocess DUT and the Deep Learning Processor IP. In this example, this interface is
used for implementing input handshaking logic with Deep Learning Processor IP.

• Step 2 prepares the design for hdl code generation.
• Step 3 generates HDL code for the IP core.
• Step 4.1 integrates the newly generated IP core into the reference design.
• In step 4.2, the host interface script and Zynq software interface model is created. Since this

example uses the interface script, and not the model, uncheck Generate Simulink software

 Deploy and Verify YOLO v2 Vehicle Detector on FPGA

3-23

interface model. The host interface script, gs_YOLOv2PreprocessTestbench_interface,
generated in this step is parameterized and provided as setupPreprocessIPInterfaces.m
function as part of this example.

• Step 4.3 generates the bitstream. The bit file is named block_design_wrapper.bit and
located at hdl_prj\vivado_ip_prj\vivado_prj.runs\impl_1. This bitstream is downloaded to FPGA in
the next section.

Compile and Deploy Yolo v2 Deep Learning Network

Now that the bitstream is generated for the IP core of the DUT integrated with the reference design
that contains the DL IP core, you can deploy the end to end deep learning application onto an FPGA.

Create a target object to connect your target device to the host computer. Use the installed Xilinx
Vivado Design Suite over an Ethernet connection to program the device.

hTarget = dlhdl.Target('Xilinx','Interface','Ethernet','IpAddr','192.168.1.101');

Load the pretrained YOLO v2 object detection network.

vehicleDetector = load('yolov2VehicleDetector.mat');
detector = vehicleDetector.detector;
net = detector.Network;

Update the bitstream build information in the MAT file generated during the IP core generation. The
name of the MAT file is dlprocessor.mat and is located in cwd\dlhdl_prj\, where cwd is your
current working folder. Copy the file to the present working folder. This example ships this MAT file
as generic_dlprocessor.mat. This MAT file generated using the target platfom Generic Deep
Learning Processor does not contain the Board/Vendor information. Use

3 Code Generation and Deployment

3-24

updateBitstreamBuildInfo.m function to update the Board/Vendor information and generate a
new MAT file with the same name as generated bitstream.

bitstreamName = 'block_design_wrapper';
updateBitstreamBuildInfo('generic_dlprocessor.mat',[bitstreamName,'.mat']);

Create a deep learning HDL workflow object using the dlhdl.Workflow class.

hW = dlhdl.Workflow('Network',net,'Bitstream',[bitstreamName,'.bit'],'Target',hTarget);

Compile the network, net using the dlhdl.Workflow object.

frameBufferCount = 3;
compile(hW, 'InputFrameNumberLimit', frameBufferCount);

Create a Xilinx processor hardware object and connect to the processor on-board the Xilinx SoC
board.

hSOC = xilinxsoc('192.168.1.101', 'root', 'root');

Call the xilinxsoc object function ProgramFPGA to program the FPGA and set the device tree to
use the processor on the SoC board.

programFPGA(hSOC, [bitstreamName,'.bit'], 'devicetree_vision_dlhdl.dtb');

Run the deploy function of the dlhdl.Workflow object to download the network weights and
biases on the Zynq UltraScale+ MPSoC ZCU102 board.

deploy(hW, 'ProgramBitStream', false);

Clear the DLHDL workflow object and hardware target.

clear hW;
clear hTarget;

Verify Deployed YOLO v2 Vehicle Detector Using MATLAB

The function YOLOv2DeployAndVerifyDetector takes hSOC object as input and performs vehicle
detection using the YOLO v2 network deployed on FPGA and verifies the end-to-end application using
MATLAB.

YOLOv2DeployAndVerifyDetector(hSOC);

This flowchart shows the operations performed in the function.

 Deploy and Verify YOLO v2 Vehicle Detector on FPGA

3-25

This section describes the steps in the flowchart in detail.

Load the vehicle data set
datasetLocation = [matlabroot,'\examples\deeplearning_shared\data'];
unzip([datasetLocation,'\vehicleDatasetImages.zip']);
data = load([datasetLocation,'\vehicleDatasetGroundTruth.mat']);
vehicleDataset = data.vehicleDataset;

The vehicle data is stored in a two-column table, where the first column contains the image file paths
and the second column contains the vehicle bounding boxes. Add the fullpath to the local vehicle data
folder.

vehicleDataset.imageFilename = fullfile(pwd,vehicleDataset.imageFilename);

Select an image from the vehicle dataset. The image below has 224 rows and 340 columns.

inputDataTbl = vehicleDataset(153,:);

Setup deep learning and preprocessing interfaces

Connect to the FPGA on-board the SoC board by using the fpga function. Use the processor hardware
object hSOC as an input to the fpga function.

3 Code Generation and Deployment

3-26

hFPGA = fpga(hSOC);

Get network input and output size. The networkOutputSize is the output size of
yolov2ClassConv obtained from analyzeNetwork(net).

networkInputSize = net.Layers(1, 1).InputSize;
networkOutputSize = [16,16,24];

The deep learning processor writes the yolov2ClassConv layer output to the external memory in a
specified data format. This data format depends on the chosen ConvThreadNumber of the deep
learning processor. readLengthFromDLIP contains the output data size. For more information, see
“External Memory Data Format” (Deep Learning HDL Toolbox)

readLengthFromDLIP = (networkOutputSize(1)*networkOutputSize(2)*networkOutputSize(3)*4)/3;

Setup the deep learning IP interfaces using setupDLIPInterfaces.m function. This function uses
BitstreamManager class to obtain the address map of the deep learning IP core registers.

addrMap = setupDLIPInterfaces(hFPGA, [bitstreamName,'.bit'], readLengthFromDLIP);
ddrbaseAddr = dec2hex(addrMap('ddrbase'));

Get image dimensions and create visionhdl.FrameToPixels System object™

frm = imread(inputDataTbl.imageFilename{1});

frmActivePixels = size(frm,2);
frmActiveLines = size(frm,1);

frm2pix = visionhdl.FrameToPixels(...
 'NumComponents',size(frm,3),...
 'VideoFormat','custom',...
 'ActivePixelsPerLine',frmActivePixels,...
 'ActiveVideoLines',frmActiveLines,...
 'TotalPixelsPerLine',frmActivePixels+10,...
 'TotalVideoLines',frmActiveLines+10,...
 'StartingActiveLine',6,...
 'FrontPorch',5);

Setup the preprocess IP interfaces using setupPreprocessIPInterfaces.m function.

inputFrameLength = frm2pix.TotalPixelsPerLine * frm2pix.TotalVideoLines;
setupPreprocessIPInterfaces(hFPGA, inputFrameLength);

Configure deep learning IP core

Set data processing mode to continuous streaming mode by setting StreamingMode register to true
and FrameCount register to 0.

writePort(hFPGA, "StreamingMode", 1);
writePort(hFPGA, "FrameCount", 0);

Pulse the inputStart signal to indicate to the deep learning IP core to start processing the data.

writePort(hFPGA, "inputStart", 0);
writePort(hFPGA, "inputStart", 1);
writePort(hFPGA, "inputStart", 0);

Assert DUTProcStart to signal preprocess DUT to start writing the preprocessed data to the DDR.

 Deploy and Verify YOLO v2 Vehicle Detector on FPGA

3-27

writePort(hFPGA, "DUTProcStart", 1);

Send input video frame to YOLO v2 Preprocess DUT

Use packPixelAndControlBus.m function to pack the pixel and control bus data. The frm2pix
object converts the input video frame to a pixel stream and pixelcontrol bus. Then, the R, G, B
components of the pixel data and the hStart, hEnd, vStart, vEnd, and valid signals of the
pixelcontrol bus are packed to generate 32 bit data, as shown.

This packed input is fed to the YOLO v2 Preprocess DUT using the writePort function of fpga
object. The input is preprocessed and written to the memory by the DUT. The deep learning IP core
reads the data from memory, performs the vehicle detection, and writes the output back to the
memory.

writePort(hFPGA, "InputData", inputImagePacked);

Read output data and perform postprocessing

The deep learning IP core returns handshaking signals indicating address, size, and validity of the
output. When the outputValid signal becomes true, the script reads the processed output data
frame using the outputAddr and outputSize signals. The readDataFromPLDDR.m function reads
the output data using the readPort function of fpga object.

outputValid = readPort(hFPGA, "OutputValid");
while(outputValid~=1)
 pause(0.1);
 outputValid = readPort(hFPGA, "OutputValid");
end

outData = readDataFromPLDDR(hFPGA, ddrbaseAddr);

After reading the output data from DDR, pulse the OutputNext signal by using the hFPGA object

writePort(hFPGA, "OutputNext", 0);
writePort(hFPGA, "OutputNext", 1);
writePort(hFPGA, "OutputNext", 0);

The yolov2TransformLayerAndPostProcess.m function performs the transform layer processing
and postprocessing on the outData, and returns the bounding boxes.

anchorBoxes = detector.AnchorBoxes;
[bboxes, scores] = yolov2TransformLayerAndPostProcess(outData, inputImage, snetworkInputSize, networkOutputSize, anchorBoxes);

Verify postprocessed output

The bounding boxes obtained from the post-processing and the ground truth are overlaid on the input
image along with the overlap ratio.

bboxesGT = inputDataTbl.vehicle{1};

3 Code Generation and Deployment

3-28

overlapRatio = bboxOverlapRatio(bboxes, bboxesGT);

bbOverlap = sprintf("Overlap with Ground Truth = %0.2f", overlapRatio);
outputImage = insertObjectAnnotation(inputImage,'rectangle',bboxes,bbOverlap);
outputImage = insertObjectAnnotation(outputImage,'rectangle',bboxesGT, '', 'Color', 'green');
imshow(outputImage);

Pulse inputStop signal

After processing the frame, pulse the inputStop signal by using the hFPGA object.

writePort(hFPGA, "InputStop", 0);
writePort(hFPGA, "InputStop", 1);
writePort(hFPGA, "InputStop", 0);

Conclusion

This example deployed the YOLO v2 vehicle detector application comprising of preprocessing steps
(image resize and normalization) and handshaking logic on FPGA, performed vehicle detection, and
verified the results using MATLAB.

 Deploy and Verify YOLO v2 Vehicle Detector on FPGA

3-29

Vertical Video Flipping Using External Memory
This example shows how to design an application to flip an incoming video stream vertically. You will
use external memory to store a video frame to accomplish this task. You can use this technique for
designing and implementing other vision applications requiring access to the external memory.

Supported hardware platform

• Xilinx® Zynq® ZC706 evaluation kit + FMC-HDMI-CAM mezzanine card

Introduction

To flip the incoming video stream from HDMI source (RX), the FPGA logic writes the video frames a
line at a time to the external memory. Later, the FPGA logic reads the stored image back, a line at a
time in the reverse order, thus flipping the image vertically. The read video frame is then sent to the
HDMI Out (TX). Video frames are stored in a ping-pong buffer in the PL-DDR, which enables
independent memory write and read operations. A separate, PS-DDR is used for storing video frames
during transfer of data to the HDMI Out. The diagram below highlights the overall data flow.

Modeling

In the top model, soc_video_flipping_top the FPGA logic is connected with the external memory and
the HDMI In/Out blocks.

3 Code Generation and Deployment

3-30

The soc_video_flipping_fpga model includes the FPGA logic. It is linked as a referenced model from
the top model. This image shows the contents of the VideoFlipping subsystem inside the
soc_video_flipping_fpga model.

The FPGA logic consists of four key components:

• AXI4 Master Write Controller receives video from HDMI Rx and writes the data into DDR. One
line of data is written per burst. When one frame finishes, it sends the end of frame (EOF) signal
to trigger AXI4 Master Read Controller.

 Vertical Video Flipping Using External Memory

3-31

• AXI4 Master Read Controller reads the lines of the video frame from the external memory ping-
pong buffer in reverse order. One line of data is read per burst. New read requests are paused if
the downstream Read FIFO block is not ready to process data. When a frame is fully read from
memory, the Read Controller waits for the next EOF signal from the Write Controller to start
reading in a new frame. If the memory controller doesn't have enough bandwidth, the read
controller may be still processing the earlier frame when the write controller finishes writing in
the next frame. In this case, the Read Controller will throw an error using errFrameDrop signal.

• Write FIFO buffers the data written to the ping-pong buffer when the DDR memory controller
asserts the backpressure signal (highlighted red arrow), to allow video data from HDMI source to
be processed. The Write FIFO should be large enough to prevent overflow and accommodate any
delay in writing to the external memory. In this example the depth of the Write FIFO is set to 2048
to accommodate 1 HD line of backpressure.

• Read FIFO buffers the data from the Read Controller when the DMA in the HDMI Tx asserts the
backpressure signal (highlighted red arrow). The backpressure is propagated to the upstream
AXI4 Master Read Controller to stop requesting data from DDR. Notice that since the AXI4 Master
Read Controller will not pause during the read burst, it is important to make sure that the Read
FIFO has enough room to store data even after its ready signal de-asserts. In this example, the
depth of the Read FIFO is set to 2048 and the almost full threshold is set to 128. When the FIFO
has 128 samples, the Read FIFO sends 'Full' signal to upstream block to stop any new read
requests. In the meanwhile, it can buffer 2048-128 = 1920 samples without an overflow. The
setting is sufficient even for a 1080p frame.

In the hardware implementation, the HDMI Tx includes two DMA frame buffers and one video timing
controller (VTC), for robust and tear free video output. The DMAs may send backpressure to DUT
when the memory controller is busy with other read or write transactions. In the FPGA model, the
backpressure signal hdmiOutputReady is set to always true for simulation only (which indicates that
the memory controller is always available). In practice, this signal often toggles between high and
low. The Read FIFO block in the DUT is used to handle this backpressure.

Simulation

The memory bandwidth requirement must be considered when designing an application that
interfaces with external memory. What is the rate that you need to transfer data to/from memory to
satisfy the requirements of your algorithm? Specifically, for vision applications, what is the frame-size
and frame-rate that you must be able to maintain?

For the selected ZC706 board, PL DDR controller is configured with 64-bit AXI4-Slave interface
running at 200 MHz. The resulting bandwidth is 1600 MB/s. Let's first evaluate if the memory
bandwidth is sufficient to maintain a 1920x1080p video stream at 60 frames-per-second. As the video
format is YCbCr 4:2:2, we require 2 bytes-per-pixel. However, for the DUT AXI4 read and write, each
pixel is zero-padded to 4 bytes, this equates to a throughput requirement of

The calculated throughput satisfies the bandwidth requirement.

To simulate 1080p 60fps case, run the following command and then simulate the model

soc_video_flipping_set_parameters("1080p")

The output is shown as below.

3 Code Generation and Deployment

3-32

If you want to model another DUT accessing the same external memory, you can use memory traffic
generator block to simulate the contention before the implementation, so you can save effort on
hardware debugging. In this model, two memory traffic generator blocks, Contention Write and
Contention Read block, are modeled to mimic the AXI transactions of another frame buffer. The
throughput of two memory traffic generators is calculated as

The total required bandwidth of memory controller is Which is
less than its maximum bandwidth 1600 MB/s. Uncomment Contention Write and Contention Read
block, simulate the model for 1080P again, the output is teared at the bottom. You will also get
assertion by 'soc_video_flipping_fpga/VideoFlipping/Assertion' block that frame get dropped.

 Vertical Video Flipping Using External Memory

3-33

3 Code Generation and Deployment

3-34

Simulation shows that memory controller can not meet the bandwidth requirement for the DUT and
memory traffic generators. You may need to consider reducing the frame resolution, or making DUT
algorithm more efficient, for example implementing pack/unpack 16bit YCbCr pixel to 32bit, other
than zero padding.

The top model runs in Accelerator mode by default. If you want to inspect the logged data in Logic
Analyzer, change the top model to Normal mode. It is best to simulate with 480p or smaller frame size
for faster results.

 Vertical Video Flipping Using External Memory

3-35

Implementation

Following products are required for this section:

• HDL Coder™

Before implementation,

• Set the simulation mode to 'Normal' on the top model.
• Comment out Contention Write and Contention Read blocks.
• Run this command if the model has been changed for the frame size other than 1080p.

soc_video_flipping_set_parameters("1080p")

To implement the model on a supported SoC board use the SoC Builder (SoC Blockset) tool. Make
sure you have installed required products and FPGA vendor software before implementation. To open
SoC Builder (SoC Blockset) click, Configure, Build, & Deploy button in the toolstrip and follow
these steps:

1 Select 'Build Model' on 'Setup' screen. Click 'Next'.
2 Click 'View/Edit Memory Map' to view the memory map on 'Review Memory Map' screen. Click

'Next'
3 Specify project folder on 'Select Project Folder' screen. Click 'Next'.
4 Select 'Build, load and run' on 'Select Build Action' screen. Click 'Next'.
5 Click 'Validate' to check the compatibility of model for implementation on 'Validate Model'

screen. Click 'Next'.
6 Click 'Build' to begin building of the model on 'Build Model' screen. An external shell will open

when FPGA synthesis begins. Click 'Next'.
7 Click 'Test Connection' on the 'Connect Hardware' screen to test the connectivity of the host

computer with SoC board. Click 'Next' to go to the 'Run Application' screen.

The FPGA synthesis can take more than 30 minutes to complete. To save time, you can use the
provided pregenerated bitstream by following these steps.

1 Close the external shell to terminate synthesis.
2 Copy pregenerated bitstream to your project folder by running this copyfile command below.
3 Click 'Load and Run' to load the pregenerated bitstream.

copyfile(fullfile(matlabshared.supportpkg.getSupportPackageRoot,'toolbox','soc','supportpackages','xilinxsoc','xilinxsocexamples','bitstreams','soc_video_flipping_top-zc706.bit'), './soc_prj');

Four LEDs on the ZC706 are driven by signals and can be used for debugging the design:

• GPIO_LED_LEFT is driven by AXI4 Master write data valid. It should be on or blinking when the
application is running.

• GPIO_LED_CENTER is driven by AXI4 Master read data valid. It should be on or blinking when the
application is running.

• GPIO_LED_RIGHT is driven by Write FIFO ready. It should be always on, otherwise AXI4 Write
data get dropped.

• GPIO_LED_0 is driven by Read FIFO ready. It could be on or off. The data won't get dropped in
this FIFO because the upstream controller will handle this backpressure properly.

3 Code Generation and Deployment

3-36

Conclusion

This example shows modeling of AXI4 Master interfaces for accessing external memory in random
fashion using SoC Blockset. You can use this technique to model vision applications involving external
memory. One such example is “Contrast Limited Adaptive Histogram Equalization with External
Memory” on page 3-59 which builds further on this example.

See Also
Memory Channel | Memory Controller | Memory Traffic Generator

Related Examples
• “Contrast Limited Adaptive Histogram Equalization with External Memory” on page 3-59

 Vertical Video Flipping Using External Memory

3-37

Rotate Image by Small Acute Angle
This example shows how to implement an image rotation algorithm for small acute angles for FPGA.

Image rotation is the movement of an image around a fixed point. It is one of the most common affine
transforms and is fundamental to many computer vision applications like feature extraction and
matching. This equation represents the affine transform that rotates new coordinates from
original coordinates by rotation angle .

This implementation is based on the imrotate (Image Processing Toolbox) function.

This example computes the transformation matrix for an angle in the range (–10, 0) and (0, 10) by
using the ComputeSmallAngleAffineTransform.m function. The transformation matrix returned
by this function is an input to the hardware algorithm. The hardware algorithm performs an affine
transform and calculates the output pixel intensities by using bilinear interpolation. This
implementation does not require external DDR memory and instead uses the on-chip block RAM to
store and resample the output pixel intensities.

Image Rotation Algorithm

The image rotation algorithm uses a reverse mapping technique to map the pixel locations of the
output rotated image to the pixels in the input image. This diagram shows the different stages of the
algorithm.

Compute Transformation This stage computes transformation parameters using the input image
dimensions and the angle of rotation, . The transformation parameters that this stage outputs
include the output bounds and the transformation matrix . The bounds help compute the
integer pixel coordinates of the output rotated image, and transforms the integer pixel
coordinates in the output rotated image to corresponding coordinates of the input image.

Affine Transform An affine transform is a geometric transformation that translates a point in one
image plane onto another image plane by preserving the images collinearity. Collinearity means that
all points on a line in the input image still form that line after transformation. Image rotation, maps

3 Code Generation and Deployment

3-38

integer pixel coordinates in the output rotated image to the corresponding coordinates of the input
image by using the transformation matrix, . If is an integer pixel coordinate in the
rotated output image and is the corresponding coordinate of the input image, then this equation
describes the transformation.

Bilinear Interpolation The rotation algorithm can produce coordinates that are noninteger
values. To generate the intensity of pixels at each integer position, a resampling technique like
interpolation must be used. This example uses bilinear interpolation to resample the image intensity
values corresponding to the generated coordinates.

In the equation and the diagram, is the coordinate of the input pixel generated by the affine
transform stage. , , , and are the four neighboring pixels, and and are the
displacements of the target pixel from its neighboring pixels. This stage of the algorithm computes
the weighted average of the four neighboring pixels by using this equation.

HDL Implementation

This figure shows the top-level view of the ImageRotationHDL model. The InputImage block imports
the image from files. The Frame To Pixels block converts the input image frames to a pixel stream
with a pixelcontrol bus for input to the ImageRotationHDLALgorithm subsystem. This
subsystem rotates the input image by an angle that you can specify by using the mask of the
Transform block. The Pixels To Frame block converts the stream of output pixels back to frames. The
ImageViewer subsystem displays the input frame and the corresponding rotated output.

 Rotate Image by Small Acute Angle

3-39

open_system('ImageRotationHDL');
set(allchild(0),'Visible','off');

The InitFcn callback of the example model computes by calling the
ComputeSmallAngleAffineTransform.m function. This function takes angle of rotation and input
image dimensions as the input. You can set these values in the mask of the Transform block.
Alternatively, you can generate your own transformation matrix (flattened to a 6-by-1 vector, because
the last column of is redundant) and give it as an input to the
ImageRotationHDLAlgorithm subsystem.

In the ImageRotationHDLAlgorithm subsystem, the GenerateControl subsystem generates a
control signal pixelcontrol bus from the input ctrl bus depending upon the displacement
parameter. The CoordinateGeneration subsystem generates the row and column pixel coordinates

 of the output rotated image. It uses two HDL counters to generate the row and column
coordinates. The AffineTransform subsystem maps these coordinates onto their corresponding
row and column coordinates, , of the input image.

The AddressGeneration subsystem calculates the addresses of the four neighbors of
required for interpolation. This subsystem also computes the parameters , , ,
and , which are used for bilinear interpolation.

The Interpolation subsystem stores the pixel intensities of the input image in a memory. To
calculate each rotated output pixel intensity, the subsystem reads the four neighbor pixel values and
computes their weighted sum.

open_system('ImageRotationHDL/ImageRotationHDLAlgorithm','force');

3 Code Generation and Deployment

3-40

Affine Transformation

The HDL implementation of the affine transformation multiplies the coordinates [u v 1] with the
transformation matrix, (flattened to a 6-by-1 vector, because the last column of is
redundant). The ComputeSmallAngleAffineTransform.m function, called in the InitFcn
callback of the model, generates the matrix. The Transformation subsystem implements
the matrix multiplication with Product blocks which multiply the integer coordinates of output image
by each element of the matrix. For this operation, the is split from a vector into
individual elements by using a Demux block.

open_system('ImageRotationHDL/ImageRotationHDLAlgorithm/AffineTransform','force');

Address Generation

The AddressGeneration subsystem takes the mapped coordinate of the input raw image as
input and then calculates the displacement and of each pixel from its neighboring
pixels. The subsystem also rounds the coordinates to the nearest integer toward negative infinity.

open_system('ImageRotationHDL/ImageRotationHDLAlgorithm/AddressGeneration','force');

 Rotate Image by Small Acute Angle

3-41

The AddressCalculation subsystem checks the coordinates against the bounds of the input
images. If any coordinate is outside the image dimensions, that coordinate is capped to the boundary
value for further processing. Next, the subsystem calculates the index of the address of each of the
four neighborhood pixels in the CacheMemory block. The index represents the column of the cache.
The subsystem finds the index for each address by using the even and odd nature of the incoming
column and row coordinates, as determined by the Extract Bits block.

% ==========================
% |Row || Col || Index ||
% ==========================
% |Odd || Odd || 1 ||
% |Even || Odd || 2 ||
% |Odd || Even || 3 ||

3 Code Generation and Deployment

3-42

% |Even || Even || 4 ||
% ==========================

The address of the neighborhood pixels is generated using this equation.

 is the row coordinate and is the column coordinate. When is even, then .

When is odd, then . When is even, then . When is odd, then

.

The IndexChangeForMemoryAccess MATLAB Function block in the AddressCalculation
subsystem rearranges the addresses in increasing order of their indices. This operation ensures the
correct fetching of data from the CacheMemory block. The addresses are given as input to the
CacheMemory block, and , , and are passed to the Interpolation subsystem.

The OutOfBound subsystem checks whether the coordinates are out of bounds (that is, if any
coordinate is outside the image dimensions). If the coordinate is out of bounds, the corresponding
output pixel is set to an intensity value of 0.

After all of the addresses and their corresponding indices are generated, a Vector Concatenate block
creates vectors of the addresses and indices.

Interpolation

The Interpolation subsystem is a For Each block which replicates its operation depending on the
dimensions of the input pixel. For example, if the input is an RGB image, then the input pixel
dimensions are 1-by-3, and the model includes 3 instances of this operation. Using the For Each block
enables the model to support RGB input or grayscale input. The operation inside the For Each
subsystem comprises two subsystems: BilinearInterpolation and CacheMemory.

open_system('ImageRotationHDL/ImageRotationHDLAlgorithm/Interpolation','force');

 Rotate Image by Small Acute Angle

3-43

Cache Memory

The CacheMemory subsystem contains a Simple Dual Port RAM block. The subsystem buffers the
input pixels to form [Line 1 Pixel 1 | Line 2 Pixel 1 | Line 1 Pixel 2 | Line 2
Pixel 2] in the RAM. This configuration enables the algorithm to read all four neighboring pixels in
one cycle. The required size of the cache memory is calculated from the offset output of the
ComputeSmallAngleAffineTransform.m function. The offset is the sum of maximum deviation
and the first row map. The first row map is the maximum value of the input image row coordinate
that corresponds to the first row of the output rotated image. The maximum deviation is the greatest
difference between the maximum and minimum row coordinates for each row of the input image row
map.

The WriteControl subsystem forms vectors of incoming pixels, write enables, and write addresses.
The AddressGeneration subsystem provides a vector of read addresses. The vector of pixels that
are read from the RAM becomes the input to the BilinearInterpolation subsystem.

open_system('ImageRotationHDL/ImageRotationHDLAlgorithm/Interpolation/CacheMemory','force');

3 Code Generation and Deployment

3-44

Bilinear Interpolation

The BilinearInterpolation subsystem rearranges the vector of read pixels from the cache to
their original indices. Then, the BilinearInterpolationEquation subsystem calculates a
weighted sum of the neighborhood pixels by using the bilinear interpolation equation mentioned in
the Image Rotation Algorithm section. The result of the interpolation is the value of the output
rotated pixel.

open_system('ImageRotationHDL/ImageRotationHDLAlgorithm/Interpolation/BilinearInterpolation','force');

Simulation and Results

This example uses a 480p RGB input image. The input pixels use the uint8 data type. The example
supports either grayscale or RGB input images. This example supports acute angles in the range (–10,
0) and (0, 10). Angles greater than 10 degrees require much higher BRAM resources.

This figure shows the input image and the corresponding output image rotated by an angle of 7
degrees. The results of the ImageRotationHDL model for this input matches the output of the
imrotate function.

 Rotate Image by Small Acute Angle

3-45

To check and generate the HDL code referenced in this example, you must have the HDL Coder™
product.

To generate the HDL code, enter this command.

makehdl('ImageRotationHDL/ImageRotationHDLAlgorithm')

To generate the test bench, enter this command.

makehdltb('ImageRotationHDL/ImageRotationHDLAlgorithm')

This design was synthesized using Xilinx® Vivado® for the ZC706 device and met a timing
requirement of over 200 MHz. This table shows the resource utilization for the HDL subsystem.

% ===
% |Model Name || ImageRotationHDL ||
% ===
% |Input Image Resolution || 480 x 640 ||
% |LUT || 2238 ||
% |FF || 2570 ||
% |BRAM || 96 ||
% |Total DSP Blocks || 94 ||
% ===

3 Code Generation and Deployment

3-46

Image Normalization Using External Memory
This example shows how to normalize image pixel values using external memory. The example
includes two models that show two ways to model the external memory: SoC external memory
modeling and behavioral memory modeling. The example also verifies that the results of the two
memory models are the same.

Supported Hardware Platform

• Xilinx® Zynq® ZC706 evaluation kit for the ImageNormalizationHDLExample model
• Xilinx® Zynq® ZC706 evaluation kit and FMC-HDMI-CAM mezzanine card for the

soc_imageNormalization_top model

Introduction

The image normalization algorithm is a preprocessing step in deployment of deep learning networks
on FPGA. This example provides an environment to prototype, customize, and integrate an end-to-end
application in Simulink®, including a framework for memory-based system integration. The
normalization algorithm that is implemented in this example takes reference from the rescale
function.

In both models, the image normalization algorithm has these inputs and parameters.

• Input image: The image must be in RGB format, with pixels of uint8 data type.
• Lower bound and upper bound: These values are the range of the normalized output values. These

values must be scalars in the range 0 to 255.
• Input minimum and maximum: These values are the minimum and maximum of the input pixel

values. You can provide these parameters on the subsystem mask, or you can select the Compute
input minimum and maximum parameter to automatically calculate these values.

This figure shows the subsystem mask parameters when you clear the Compute input minimum
and maximum parameter and use fixed values for the Input minimum and Input maximum
parameters.

 Image Normalization Using External Memory

3-47

This figure shows the subsystem mask parameters when you select the Compute input minimum
and maximum parameter. The subsystem computes the input minimum and maximum values from
the input pixel stream.

3 Code Generation and Deployment

3-48

To dynamically calculate the input minimum and maximum of the input frame, the design must store
a complete frame in memory. This example shows two ways to model the frame memory. The
ImageNormalizationHDLExample model stores the input frame by using HDL Coder™ FIFO blocks
as a behavioral memory model. The soc_imageNormalization_top model stores the input frame
by using SoC Blockset™ external memory blocks. Using external memory reduces the use of BRAM
and enables processing of higher resolution input video streams. The use of external memory
requires using AXI4 protocols and verification against memory contention. The model shows a fully
compliant AXI4 interface that includes AXI4 write and read controllers.

The AXI4 random access interface provides a simple, direct interface to the memory interconnect.
This protocol enables the algorithm to act as a memory controller by providing the addresses and
managing the burst transfer directly. The AXI4-Master Write Controller and AXI4-Master Read
Controller blocks in this example model a simplified AXI4 interface in Simulink™. When you generate
HDL code using the HDL Coder product, the generated code includes a fully compliant AXI4 interface
IP.

External Memory Model

The SoC Blockset product provides Simulink blocks and visualization tools for modeling, simulating,
and analyzing hardware and software architectures for ASICs, FPGAs, and SoCs. The product enables
you to build a system architecture using memory models, bus models, and I/O models, and to simulate
the architecture together with the algorithms. This example models the external memory interface by
using the SoC Blockset Memory Channel and Memory Controller blocks.

• The Memory Channel block streams data through external memory. It models data transfer
between the read and write controller algorithms, through shared memory. This example
configures the channel to use AXI4 random access protocol.

• The Memory Controller block arbitrates between channels and grants them unique access to
shared memory. It supports multiple channels with various arbitration protocols. The Memory
Controller block also logs and displays performance data. This data enables you to debug and
observe the performance of the system at simulation time.

HDL Implementation

This figure shows the top level of the soc_imageNormalization_top model, including the Memory
Channel and Memory Controller blocks. The HDMI Rx block processes the video input and passes it
to the soc_imageNormalization_FPGA reference model.

open_system('soc_imageNormalization_top')

 Image Normalization Using External Memory

3-49

In the soc_imageNormalization_FPGA model, the input pixel stream connects to a Video Stream
Connector block. This block provides a video streaming interface to connect any two IPs in the FPGA
implementation. The Video Stream Connector blocks connect the HDMI input and output blocks with
the rest of the FPGA algorithm.

open_system('soc_imageNormalization_FPGA')

3 Code Generation and Deployment

3-50

The next figure shows the ImageNormalizationFPGA subsystem, which implements the AXI write
and read from external memory and the normalization algorithm.

The hdmiDataIn signal is in YCbCr 4:2:2 pixel stream format. Because the normalization algorithm
expects RGB images, the YCbCr422ToRGB subsystem converts the YCbCr 4:2:2 data to RGB.

The subsystem contains the ImageNormalization subsystem and these sections.

• AXI Write to Memory: This section writes the input data into the memory. It consists of an AXI4-
Master Write Controller block that receives the input video control information from the HDMI Rx
block and models the AXI4 memory-mapped interface for writing data into the DDR. It has five
output signals: wr_addr, wr_len, wr_valid, rd_start, and frame. The wr_valid signal is an
input to the AXI Write FIFO block, which stores the incoming pixel intensities. The SoC Bus
Creator block generates the wrCtrlOut bus for writing the data into the DDR. The model writes
one line of data per burst. After writing all of the lines of the frame, the model asserts the
rd_start signal to begin the read request.

• AXI Read from Memory: This section reads the data from the memory. It consists of an AXI4-
Master Read Controller block that receives the rd_start signal from the AXI4-Master Write
Controller block. The AXI4-Master Read Controller block generates the rd_addr, rd_len,
rd_avalid, and rd_dready signals. An SoC Bus Creator block combines these signals into a bus.
The AXI4-Master Read Controller block also generates the pixelcontrol bus corresponding to
the rd_data signal. The model slices the 32 bit rd_data signal to retrieve the 24 bit (LSB) RGB
data. Then, the model forms a 1-by-3 uint8 RGB vector and passes the vector to the
normalization algorithm.

The RGB pixel values read from the DDR frame memory are connected to the buffPixIn and
buffCtrlIn input ports of the Image Normalization subsystem.

 Image Normalization Using External Memory

3-51

open_system('soc_imageNormalization_FPGA/ImageNormalizationFPGA')

Normalization Algorithm

The next figure shows the ImageNormalization subsystem, which implements the normalization
algorithm.

The input RGB pixel data (from the YCbCr422ToRGB subsystem) is of ufix24 data type. This
subsystem converts the RGB data to uint8 1-by-3 RGB vectors. The InputMinMaxCalc subsystem
calculates the input minimum and maximum values.

The Rescale subsystem references the NormalizationAlgorithm model.

open_system('soc_imageNormalization_FPGA/ImageNormalizationFPGA/ImageNormalization')

3 Code Generation and Deployment

3-52

The NormalizationAlgorithm model performs the normalization algorithm described by this
equation.

l is the lower bound, u is the upper bound, sigma is , and
constReg is high when the input minimum is equal to the input maximum.

This figure shows the NormalizationAlgorithm model.

open_system('NormalizationAlgorithm')

 Image Normalization Using External Memory

3-53

Hardware Implementation

To build, load, and execute the model on FPGA boards, use the SoC Builder tool. This example uses
the Xilinx Zynq ZC706 evaluation kit. For more detail about the building steps, see SoC Builder (SoC
Blockset).

Performance Plots

This example uses an input video of size 480-by-640 pixels. The model configures the HDMI Rx block
to use this size. For the Xilinx Zynq ZC706 evaluation kit, the PL DDR controller is configured with a
64 bit AXI4 subordinate interface running at 200 MHz. The resulting bandwidth is 1600 MB/s. This
example has two AXI managers connected to the DDR controller. These AXI managers are the AXI4
read and write interfaces of the normalization algorithm. The YCbCr 4:2:2 video format requires 2
bytes per pixel. For the AXI4 read and write interfaces, each pixel is zero-padded to 4 bytes. In this
case, the read and write interfaces have a throughput requirement of 2x4x480x640x60 = 147.456
MB/s.

This figure shows the performance plot of the Memory Controller block. To view the performance
plot, first open the Memory Controller block. Then, on the Performance tab, click View
performance plots. Select all of the masters under Bandwidth, and then click Update. After the
algorithm starts writing and reading data into external memory, the throughput remains around 180
MB/s, which is within the required throughput of 147.456 MB/s.

3 Code Generation and Deployment

3-54

Behavioral Memory Model

This model implements the algorithm using a streaming pixel format, Vision HDL Toolbox™ blocks,
and Simulink blocks that support HDL code generation. The serial interface mimics a real-time
system and is efficient for hardware designs because less memory is required to store pixel data for
computation. The serial interface also enables the design to operate independently of image size and
format and makes the design more resilient to timing errors. Fixed-point data types use fewer
resources and can give better performance on FPGA. The InitFcn callback function initializes the
necessary variables for this example.

open_system('ImageNormalizationHDLExample');

 Image Normalization Using External Memory

3-55

The HDMI_Rx block imports the input video to the model. The Pixels To Frame block converts the
pixel stream back to image frames. The BehavioralMemory subsystem stores the input image so
that the NormalizationAlgorithm subsystem can read it as needed.

The ImageNormalizationHDL subsystem is a variant subsystem that provides either of the two
implementations shown in this figure.

open_system('ImageNormalizationHDLExample/ImageNormalizationHDL/Variant Subsystem')

InputMinMaxVariant

If you clear the Compute input minimum and maximum parameter, then you must provide Input
minimum and Input maximum parameter values. The algorithm normalizes the input frame by
using the provided input minimum and maximum values and the lower and upper bound values.

3 Code Generation and Deployment

3-56

open_system('ImageNormalizationHDLExample/ImageNormalizationHDL/Variant Subsystem/InputMinMaxVariant')

ComputeMinMaxVariant

If you select the Compute input minimum and maximum parameter, then the InputMinMaxCalc
subsystem computes the input minimum and maximum values of the input image. The algorithm
normalizes the input frame by using the computed input minimum and maximum values and the
provided lower and upper bound values.

You can verify the results from either of the variant implementations against the golden reference
normalization algorithm by using the CompareOut block.

open_system('ImageNormalizationHDLExample/CompareOut')

 Image Normalization Using External Memory

3-57

Verify Results Between External Memory Model and Behavioral Memory Model

Compare the output from the ImageNormalizationHDLExample model (behavioral memory model)
with the output of the soc_imageNormalization_top model (external memory model) by using the
errorCheck.m script. To be able to compare the results of these two models, you must select the
Compute input minimum and maximum parameter in the ImageNormalizationHDLExample
model. Run both models to save the output to the MATLAB® workspace. The outputs of the
ImageNormalizationHDLExample model are the simPixOut and simValidOut variables. The
outputs of the soc_imageNormalization_top model are the socPixOut and socValidOut
variables. The errorCheck function takes these variables as inputs and returns the total number of
error pixels in the R, G, and B channels.

 [errR,errG,errB] = errorCheck(simPixOut,simValidOut,socPixOut,socValidOut)

3 Code Generation and Deployment

3-58

Contrast Limited Adaptive Histogram Equalization with
External Memory

This example shows how to implement the contrast-limited adaptive histogram equalization (CLAHE)
algorithm for FPGA, including an external memory interface.

Supported Hardware

• Xilinx® Zynq® ZC706 evaluation kit + FMC-HDMI-CAM mezzanine card

Introduction

Video processing algorithms often store a full frame of video data in memory. Implementing this
storage on an FPGA increases BRAM utilization and can result in input video resolution constraints.
This example shows how to implement vision algorithms on FPGAs by using an external memory
resource to reduce use of BRAM and enable processing of higher resolution input video.

The external memory interface in this example uses AXI4 protocols and verifies the design against
memory contention. The AXI4 Random Access interface provides a simple, direct interface to the
memory interconnect. This protocol enables the algorithm to act as a memory master by providing
the addresses and managing the burst transfer directly. The AXI4 Master Write Controller and AXI4
Master Read Controller blocks in this example model a simplified AXI-4 interface in Simulink™. When
you generate HDL code using the HDL Coder™ product, the generated code includes a fully
compliant AXI4 interface IP.

 Contrast Limited Adaptive Histogram Equalization with External Memory

3-59

Model External Memory

You can use SoC Blockset™ blocks and visualization tools for modeling, simulating, and analyzing
hardware and software architectures for ASICs, FPGAs, and systems on a chip (SoC). These features
can help you build system architecture using memory models, bus models, and interface models and
help you simulate the architecture together with the algorithms. This example models external
memory using two blocks from the SoC Blockset libraries:

• Memory Channel: This block streams data through external memory. It models data transfer
between the read and write master algorithms through shared memory. This example uses the
AXI4 Random Access channel type.

• Memory Controller: This block arbitrates between masters and grants them unique access to
shared memory. It is configured to support multiple channels with various arbitration protocols.
This block also logs and displays memory performance data. This feature enables you to analyze
and debug the performance of the system at simulation time.

3 Code Generation and Deployment

3-60

HDL Implementation

The CLAHE algorithm has three steps: tiling, histogram equalization, and bilinear interpolation. The
bilinear interpolation step uses the pixel intensities from the input frame. Storing the full input frame
of video data until the bilinear interpolation step requires external memory.

The figure shows the top level of the example model. The HDMI Rx block processes the video input
and passes it to the CLAHEAlgorithm_fpga subsystem. The HDMI Rx block converts raw video data to
a YCbCr 4:2:2 pixel stream format. The output data is a pixel stream suitable for hardware algorithm
design. The HDMI Rx block also directs the SoC Builder tool to generate the IP blocks necessary to
receive video data from the FMC-HDMI-CAM card that is attached to the hardware board.

In the model, the AXI4-Master Write Controller and AXI4-Master Read Controller blocks model the
AXI4 memory mapped interfaces. The AXI4-Master Write Controller block writes the input frame into
the external memory, and the AXI4-Master Read Controller block reads the frame from the external
memory for bilinear interpolation. The AXI Read FIFO block sends the output pixel stream to the
HDMI Tx block. The HDMI Tx block converts a pixel stream in YCbCr 4:2:2 format to raw video data
for display during simulation. This block also directs the SoC Builder tool to generate the IP blocks
that transmit video data back to the FMC-HDMI-CAM card. To indicate the status of the AXI Read

 Contrast Limited Adaptive Histogram Equalization with External Memory

3-61

FIFO and AXI Write FIFO blocks when running the design on hardware, four debug signals from
these blocks are connected to LEDs on the board.

The next figure shows the CLAHEAlgorithm_fpga reference model. The input pixel stream connects to
a Video Stream Connector block. This block provides a video streaming interface to connect any two
IPs in the FPGA implementation. In this example, the Video Stream Connector blocks connect the
HDMI input and output blocks with the rest of the FPGA algorithm.

3 Code Generation and Deployment

3-62

The next figure shows the CLAHEAlgorithm_fpga/CLAHE subsystem, which implements the AXI write
and read from external memory, and the CLAHE algorithm.

 Contrast Limited Adaptive Histogram Equalization with External Memory

3-63

The subsystem contains these areas: * AXI Write to Memory: This section writes the input data into
the DDR. It consists of an AXI4 Master Write Controller block that receives the input video control
information from the HDMI Rx block and models the AXI4 memory mapped interface for writing data
into the DDR. It generates five signals: wr_addr, wr_len, wr_valid, rd_start, and frame. The
wr_valid signal is an input to the AXI Write FIFO block, which stores the incoming pixel intensities.
The SoC Bus Creator block generates the wrCtrlOut master to slave bus for writing the data into
the DDR. The model writes one line of data per burst. After writing tileHeight/ 2 lines (where
tileHeight corresponds to the height of each tile in CLAHE), the model asserts the rd_start signal
to begin the read request. The frame signal indicates the input frame count.

• AXI Read from Memory: This section reads the data from the DDR. It consists of an AXI4-Master
Read Controller block that receives the rd_start signal from the AXI4-Master Write Controller
block. The AXI4-Master Read Controller block generates the rd_addr, rd_len, rd_avalid, and
rd_dready signals. An SoC Bus Creator block combines these signals into a bus. The AXI4-
Master Read Controller block also generates the pixelcontrol bus corresponding to the
rd_data. The model slices the 32-bit rd_data signal to retrieve the 8-bit (LSB) luminance
component and then writes it into the cache memory block of the CLAHE algorithm.

3 Code Generation and Deployment

3-64

• CLAHE: For a detailed description of the implementation of the CLAHE algorithm for hardware,
see the “Contrast Limited Adaptive Histogram Equalization” on page 2-161 example. The
CLAHEHDLAlgorithm subsystem operates on 8-bit grayscale images, which is why the 8-bit
luminance (Y) component is separated from the 16-bit YCbCr pixel data.

The CLAHEHDLAlgorithm subsystem performs the three steps of CLAHE: tiling, histogram
equalization, and bilinear interpolation. In the first step, the input frame is divided into an 8-by-8 grid
of tiles. In the second step, the histogram of each tile is calculated, and then performs distribution,
redistribution, and CDF calculations. The calculated CDF values are stored in a buffer for further
processing. The third step calculates the output pixel intensities by using a bilinear interpolation of
the CDF values. The pixel intensities of the input frame are used as the address to the buffer that
stores the CDF values. These pixel intensities are read from the external memory that stores the
original input frame.

Because the data read back from the external memory is in burst mode, it cannot be used directly for
bilinear interpolation. The cache buffer stores the burst of lines read from the external memory. The
depth of the cache is enough to store a number of lines equal to tileHeight. The rdValid signal from
the CLAHEHDLAlgorithm subsystem generates the rd_addr signal to read the data from the cache.
The data read from the cache (pixValue) is then returned to the CLAHEHDLAlgorithm subsystem to
complete the bilinear interpolation to calculate the output pixel intensity.

Hardware Implementation

The SoC Builder tool builds, loads, and executes the model on the FPGA board. The hardware board
used in this example is the Xilinx® Zynq® ZC706 evaluation kit. To build, load, and execute the
design on the hardware, follow these steps.

1 Set up the Vivado® tool for synthesis, implementation, and generation of the FPGA bitstream.
2 The example model runs in Accelerator mode by default to speed up the simulation. However,

the SoC Builder tool requires Normal simulation mode. In Simulink Configuration Parameters,
set Simulation mode to Normal.

3 Launch the SoC Builder tool by clicking Configure, Build, & Deploy in the Simulink Toolstrip.
4 Select Build model, and then review the memory map in the Review Memory Map pane.
5 In the Select Project Folder pane, specify your project folder. In the Select Build Action pane,

select Build, load, and run.
6 In the Validate Model pane, click Validate to check the compatibility of the model for

implementation. Then click Build to begin building the model. When FPGA synthesis starts ,an
external shell opens.

7 When the bitstream generation is complete, in the Connect Hardware pane, select Test
Connection to test the connection between the host computer and the hardware board. Load the
bitstream on the hardware by clicking Load.

This figure shows the final SoC Builder results after these steps are complete.

 Contrast Limited Adaptive Histogram Equalization with External Memory

3-65

Simulation and Results

This example uses an input video of size 480-by-640 pixels. This size is configured in the HDMI Rx
block. For the Xilinx Zynq ZC706 evaluation kit, the PL DDR controller is configured with a 64-bit
AXI4-Slave interface running at 200 MHz. The resulting bandwidth is 1600 MB/s. This example has
two AXI masters connected to the DDR controller. These AXI masters are the DUT AXI4 read and
write interfaces. The YCbCr 4:2:2 video format requires 2 bytes per pixel. For the DUT AXI4 read and
write interfaces, each pixel is zero-padded to 4 bytes. In this case, the read and write interfaces have
a throughput requirement of 2*4*480*640*60 = 147.456 MB/s.

This figure shows the performance plot of the Memory Controller block. To view the performance
plot, first open the Memory Controller block. Then, on the Performance tab, click View
performance plots. Select all masters under Bandwidth, and then click Update. After the DUT
starts writing and reading data into external memory, the throughput remains around 154 MB/s,
which is within the required throughput of 147.456 MB/s.

3 Code Generation and Deployment

3-66

The signals in the example model are logged during simulation. View these signals by using the Logic
Analyzer app. This figure shows the logged data of input and output frames.

 Contrast Limited Adaptive Histogram Equalization with External Memory

3-67

This figure shows the input and output frames from the model. The result shows the improved
contrast in the output image.

References

[1] Zuiderveld, Karel. "Contrast Limited Adaptive Histogram Equalization." In Graphics Gems IV,
edited by Paul S. Heckbert, 474-485. AP Professional, 1994.

See Also
Memory Channel | Memory Controller | Memory Traffic Generator

Related Examples
• “Vertical Video Flipping Using External Memory” on page 3-30

3 Code Generation and Deployment

3-68

HDL Cosimulation
HDL cosimulation links an HDL simulator with MATLAB or Simulink. This communication link
enables integrated verification of the HDL implementation against the design. To perform this
integration, you need an HDL Verifier™ license. HDL Verifier cosimulation tools enable you to:

• Use MATLAB or Simulink to create test signals and software test benches for HDL code
• Use MATLAB or Simulink to provide a behavioral model for an HDL simulation
• Use MATLAB analysis and visualization capabilities for real-time insight into an HDL

implementation
• Use Simulink to translate legacy HDL descriptions into system-level views

See Also

More About
• “HDL Cosimulation” (HDL Verifier)

 HDL Cosimulation

3-69

FPGA-in-the-Loop
FPGA-in-the-loop (FIL) enables you to run a Simulink or MATLAB simulation that is synchronized with
an HDL design running on an FPGA board. This link between the simulator and the board enables you
to verify HDL implementations directly against Simulink or MATLAB algorithms. You can apply real-
world data and test scenarios from these algorithms to the HDL design that is running on the FPGA.

In Simulink, you can use the FIL Frame To Pixels and FIL Pixels To Frame blocks to accelerate
communication between Simulink and the FPGA board. In MATLAB, you can modify the generated
code to speed up communication with the FPGA board.

FPGA-in-the-Loop Simulation with Vision HDL Toolbox Blocks
This example shows how to modify the generated FPGA-in-the-loop (FIL) model for more efficient
simulation of the Vision HDL Toolbox™ streaming video protocol.

Autogenerated FIL Model

When you generate a programming file for a FIL target in Simulink, the HDL Workflow Advisor
creates a model to compare the FIL simulation with your Simulink design. For details of how to
generate FIL artifacts for a Simulink model, see “FIL Simulation with HDL Workflow Advisor for
Simulink” (HDL Verifier).

For Vision HDL Toolbox designs, the FIL block in the generated model replicates the pixel-streaming
interface and sends one pixel at a time to the FPGA. The model shown was generated from the
example model in “Design Video Processing Algorithms for HDL in Simulink”.

The top part of the model replicates your Simulink design. The generated FIL block at the bottom
communicates with the FPGA. ToFILSrc subsystem copies the pixel-stream input of the HDL
Algorithm block to the FromFILSrc subsystem. The ToFILSink subsystem copies the pixel-stream
output of the HDL Algorithm block into the Compare subsystem, where it is compared with the output
of the HDL Algorithm_fil block. For image and video processing, this setup is slow because the model
sends only a single pixel, and its associated control signals, in each packet to and from the FPGA
board.

3 Code Generation and Deployment

3-70

Modified FIL Model for Pixel Streaming

To improve the communication bandwidth with the FPGA board, you can use the generated FIL block
with vector input rather than streaming. This example includes a model,
FILSimulinkWithVHTExample.slx, created by modifying the generated FIL model. The modified model
uses the FIL Frame To Pixels and FIL Pixels To Frame blocks to send one frame at a time to the
generated FIL block. You cannot run this model as is. You must generate your own FIL block and
bitstream file that use your board and connection settings.

To convert from the generated model to the modified model:

1 Remove the ToFILSrc, FromFILSrc, ToFILSink, and Compare subsystems, and create a branch at
the frame input of the Frame To Pixels block.

2 Insert the FIL Frame To Pixels block before the HDL Algorithm_fil block. Insert the FIL Pixels To
Frame block after the HDL Algorithm_fil block.

3 Branch the frame output of the Pixels To Frame block for comparison. You can compare the
entire frame at once with a Diff block. Compare the validOut signals using an XOR block.

4 In the FIL Frame To Pixels and FIL Pixels To Frame blocks, set the Video format parameter to
match the video format of the Frame To Pixels and Pixels To Frame blocks.

5 Set the Vector size in the FIL Frame To Pixels and FIL Pixels To Frame blocks to Frame or Line.
The size of the FIL Frame To Pixels vector output must match the size of the FIL Pixels To Frame
vector input. The vector size of the FIL block interfaces does not modify the generated HDL code.
It affects only the packet size of the communication between the simulator and the FPGA board.

The modified model sends an entire frame to the FPGA board in each packet, significantly improving
the efficiency of the communication link.

FPGA-in-the-Loop Simulation with Multipixel Streaming
When using FPGA-in-the-Loop with a multipixel streaming design, you must flatten the pixel ports to
vectors for input and output of the FIL block. Use Selector blocks to separate the input pixel streams
into NumPixels vectors, and use a Vector Concatenate block to recombine the output vectors.

If each pixel is represented by more than one component, the FIL Frame To Pixels block has one data
port per component and the FIL block has NumPixels×NumComponents ports. Split each component
matrix into NumPixels vectors.

 FPGA-in-the-Loop

3-71

This model shows a multipixel, single component design.

For VHDL code generation, in Configuration Parameters > HDL Code Generation > Global
Settings > Ports, set the Scalarize ports parameter to DUT Level.

3 Code Generation and Deployment

3-72

FPGA-in-the-Loop Simulation with Vision HDL Toolbox System Objects
This example shows how to modify the generated FPGA-in-the-loop (FIL) script for more efficient
simulation of the Vision HDL Toolbox™ streaming video protocol. For details of how to generate FIL
artifacts for a MATLAB® System object™, see “FIL Simulation with HDL Workflow Advisor for
MATLAB” (HDL Verifier).

Autogenerated FIL Function

When you generate a programming file for a FIL target in MATLAB, the HDL Workflow Advisor
creates a test bench to compare the FIL simulation with your MATLAB design. For Vision HDL
Toolbox designs, the DUTname_fil function in the test bench replicates the pixel-streaming interface
and sends one pixel at a time to the FPGA. DUTname is the name of the function that you generated
HDL code from.

This code snippet is from the generated test bench TBname_fil.m, generated from the example
script in “Pixel-Streaming Design in MATLAB” on page 2-192. The code calls the generated
DUTname_fil function once for each pixel in a frame.

for p = 1:numPixPerFrm
 [pixOutVec(p),ctrlOutVec(p)] = PixelStreamingDesignHDLDesign_fil(pixInVec(p), ctrlInVec(p));
end

The generated DUTname_fil function calls your HDL-targeted function. It also calls the
DUTname_sysobj_fil function, which contains a System object that connects to the FPGA.
DUTname_fil compares the output of the two functions to verify that the FPGA implementation
matches the original MATLAB results. This snippet is from the file DUTname_fil.m.

% Call the original MATLAB function to get reference signal
[ref_pixOut,tmp_ctrlOut] = PixelStreamingDesignHDLDesign(pixIn,ctrlIn);

 ...

% Run FPGA-in-the-Loop
[pixOut,ctrlOut_hStart,ctrlOut_hEnd,ctrlOut_vStart,ctrlOut_vEnd,ctrlOut_valid] ...
 = PixelStreamingDesignHDLDesign_sysobj_fil(pixIn,ctrlIn_hStart,ctrlIn_hEnd,ctrlIn_vStart,ctrlIn_vEnd,ctrlIn_valid);

 ...

% Verify the FPGA-in-the-Loop output
hdlverifier.assert(pixOut,ref_pixOut,'pixOut');

For image and video processing, this setup is slow because the function sends only one pixel, and its
associated control signals, in each packet to and from the FPGA board.

Modified FIL Test Bench for Pixel Streaming

To improve the communication bandwidth with the FPGA board, you can modify the autogenerated
test bench, TBname_fil.m. The modified test bench calls the FIL System object directly, with one
frame at a time. These snippets are from the
PixelStreamingDesignHDLTestBench_fil_frame.m script, modified from FIL artifacts
generated from the example script in “Pixel-Streaming Design in MATLAB” on page 2-192. You
cannot run this script as is. You must generate your own FIL System object, function, and bitstream
file that use your board and connection settings. Then, either modify your version of the generated
test bench, or modify this script to use your generated FIL object.

Declare an instance of the generated FIL System object.

 FPGA-in-the-Loop

3-73

fil = class_PixelStreamingDesignHDLDesign_sysobj;

Comment out the loop over the pixels in the frame.

% for p = 1:numPixPerFrm
% [pixOutVec(p),ctrlOutVec(p)] = PixelStreamingDesignHDLDesign_fil(pixInVec(p), ctrlInVec(p));
% end

Replace the commented loop with the code below. Call the step method of the fil object with
vectors containing the whole frame of data pixels and control signals. Pass each control signal to the
object separately, as a vector of logical values. Then, recombine the control signal vectors into a
vector of structures.

[pixOutVec,hStartOut,hEndOut,vStartOut,vEndOut,validOut] = ...
 step(fil,pixInVec,[ctrlInVec.hStart]',[ctrlInVec.hEnd]',[ctrlInVec.vStart]',[ctrlInVec.vEnd]',[ctrlInVec.valid]');
ctrlOutVec = arrayfun(@(hStart,hEnd,vStart,vEnd,valid) ...
 struct('hStart',hStart,'hEnd',hEnd,'vStart',vStart,'vEnd',vEnd,'valid',valid),...
 hStartOut,hEndOut,vStartOut,vEndOut,validOut);

These code changes remove the pixel-by-pixel verification of the FIL results against the MATLAB
results. Optionally, you can add a pixel loop to call the reference function, and a frame-by-frame
comparison of the results. However, calling the original function for a reference slows down the
simulation.

for p = 1:numPixPerFrm
 [ref_pixOutVec(p),ref_ctrlOutVec(p)] = PixelStreamingDesignHDLDesign(pixInVec(p),ctrlInVec(p));
end

After the call to the fil object, compare the output vectors.

hdlverifier.assert(pixOutVec',ref_pixOutVec,'pixOut')
hdlverifier.assert([ctrlOutVec.hStart],[ref_ctrlOutVec.hStart],'hStart')
hdlverifier.assert([ctrlOutVec.hEnd],[ref_ctrlOutVec.hEnd],'hEnd')
hdlverifier.assert([ctrlOutVec.vStart],[ref_ctrlOutVec.vStart],'vStart')
hdlverifier.assert([ctrlOutVec.vEnd],[ref_ctrlOutVec.vEnd],'vEnc')
hdlverifier.assert([ctrlOutVec.valid],[ref_ctrlOutVec.valid],'valid')

This modified test bench sends an entire frame to the FPGA board in each packet, significantly
improving the efficiency of the communication link.

See Also
Blocks
FIL Frame To Pixels | FIL Pixels To Frame | Image Filter

Objects
visionhdl.ImageFilter

More About
• “FPGA Verification” (HDL Verifier)

3 Code Generation and Deployment

3-74

Prototype Vision Algorithms on Zynq-Based Hardware
You can use the Vision HDL Toolbox Support Package for Xilinx Zynq-Based Hardware to prototype
your vision algorithms on Zynq-based hardware that is connected to real input and output video
devices. Use the support package to:

• Capture input or output video from the board and import it into Simulink for algorithm
development and verification.

• Generate and deploy vision IP cores to the FPGA on the board. (requires HDL Coder)
• Generate and deploy C code to the ARM® processor on the board. You can route the video data

from the FPGA into the ARM® processor to develop video processing algorithms targeted to the
ARM processor. (requires Embedded Coder®)

• View the output of your algorithm on an HDMI device.

Video Capture
Using this support package, you can capture live video from your Zynq device and import it into
Simulink. The video source can be an HDMI video input to the board, an on-chip test pattern
generator included with the reference design, or the output of your custom algorithm on the board.
You can select the color space and resolution of the input frames. The capture resolution must match
that of your input camera.

Once you have video frames in Simulink, you can:

• Design frame-based video processing algorithms that operate on the live data input. Use blocks
from the Computer Vision Toolbox™ libraries to quickly develop frame-based, floating-point
algorithms.

• Use the Frame To Pixels block from Vision HDL Toolbox to convert the input to a pixel stream.
Design and verify pixel-streaming algorithms using other blocks from the Vision HDL Toolbox
libraries.

Reference Design
The Vision HDL Toolbox Support Package for Xilinx Zynq-Based Hardware provides a reference
design for prototyping video algorithms on the Zynq boards.

When you generate an HDL IP core for your pixel-streaming design using HDL Workflow Advisor, the
core is included in this reference design as the FPGA user logic section. Points A and B in the diagram
show the options for capturing video into Simulink.

The FPGA user logic can also contain an optional interface to external frame buffer memory, which is
not shown in the diagram.

 Prototype Vision Algorithms on Zynq-Based Hardware

3-75

Note The reference design on the Zynq device requires the same video resolution and color format
for the entire data path. The resolution you select must match that of your camera input. The design
you target to the user logic section of the FPGA must not modify the frame size or color space of the
video stream.

The reference design does not support multipixel streaming.

Deployment and Generated Models
By running all or part of your pixel-streaming design on the hardware, you speed up simulation of
your video processing system and can verify its behavior on real hardware. To generate HDL code
and deploy your design to the FPGA, you must have HDL Coder and the HDL Coder Support Package
for Xilinx Zynq Platform, as well as Xilinx Vivado® and the Xilinx SDK.

After FPGA targeting, you can capture the live output frames from the FPGA user logic back to
Simulink for further processing and analysis. You can also view the output on an HDMI output
connected to your board. Using the generated hardware interface model, you can control the video
capture options and read and write AXI-Lite ports on the FPGA user logic from Simulink during
simulation.

The FPGA targeting step also generates a software interface model. This model supports software
targeting to the Zynq hardware, including external mode, processor-in-the-loop, and full deployment.
It provides data path control, and an interface to any AXI-Lite ports you defined on your FPGA
targeted subsystem. From this model, you can generate ARM code that drives or responds to the AXI-
Lite ports on the FPGA user logic. You can then deploy the code on the board to run along with the
FPGA user logic. To deploy software to the ARM processor, you must have Embedded Coder and the
Embedded Coder Support Package for Xilinx Zynq Platform.

3 Code Generation and Deployment

3-76

See Also

More About
• “Vision HDL Toolbox Support Package for Xilinx Zynq-Based Hardware”

 Prototype Vision Algorithms on Zynq-Based Hardware

3-77

Block Reference Examples

4

Select Region of Interest
This example shows how to select a region of active frame from a video stream by using the ROI
Selector block from the Vision HDL Toolbox™.

There are numerous applications where the input video is divided into several zones. In medical
imaging, the boundaries of a tumor may be defined on an image or in a volume for the purpose of
measuring its size. In geographical information systems (GIS), an ROI can be taken as a polygonal
selection from a 2-D map.

Example Model

The example model includes a Video Source block that contains a 240p video sample. Each pixel is a
scalar uint8 value that represents intensity. The green and red lines represent full-frame processing
and pixel-stream processing, respectively.

Serialize the Image

Use Frame To Pixels block to convert a full-frame image into pixel stream. To simulate the effect of
horizontal and vertical blanking periods found in real life hardware video systems, the active image is
augmented with non-image data. For more information on the streaming pixel protocol, see
“Streaming Pixel Interface” on page 1-2. The Frame To Pixels block is configured as shown:

4 Block Reference Examples

4-2

The Number of components parameter is set to 1 for grayscale image input, and the Video format
parameter is 240p to match the video source.

In this example, the Active Video region corresponds to the 240x320 matrix of the source image. Six
other parameters, namely, Total pixels per line, Total video lines, Starting active line, Ending

 Select Region of Interest

4-3

active line, Front porch, and Back porch, specify how many non-image data will be augmented on
the four sides of the Active Video. For more information, see the Frame To Pixels block reference
page.

Note that the sample time of the Video Source block is determined by the product of Total pixels per
line and Total video lines.

Select Regions of Interest

The ROI Selection subsystem contains only an ROI Selector block.

Use the ROI Selector block to select regions of interest. You can use the Regions parameter to
experiment with different region sizes and examine their effect on the output frames. In this model,
the Regions parameter is set to [100 100 50 50;220 170 100 70] which represents two
regions, each specified by [hPos vPos hSize vSize]. The first region is 50-by-50 pixels and
located 100 pixels to the right and 100 pixels down from the top-left corner of the active frame. The
second region is 100 pixels wide and 70 pixels tall, and is located in the bottom-right corner of the
active frame.

The ROI Selector block accepts a pixel stream and a bus that contains five control signals from the
Frame To Pixels block. It returns each region as a pixel stream that uses the same protocol, by
manipulating the control signals. Each region is selected by setting the valid signal in the output
pixelcontrol bus to false for any pixels not included in the requested region.

Display Regions of Interest

Use the Pixels To Frame block to convert the pixel stream back into a full frame. Since the output of
the Pixels To Frame block is a 2-D matrix of a full image, there is no further need for the
pixelcontrol bus.

The Number of components and Video format parameters of both Frame To Pixels and Pixels To
Frame are set to 1 and 240p, respectively, to match the format of the video source. The size of each
active frame is smaller than 240p after the ROI selection. The Pixels to Frame block returns a 240-
by-320 matrix with the active portion of the frame in the top-left corner.

Run the model to display the results. The model displays the output video streams by using three
Video Viewer blocks.

• Source Image View -- The input video from the Video Source block
• ROI Selector Viewer1 -- The 50-by-50 pixel region
• ROI Selector Viewer2 -- The 100-by-70 pixel region

4 Block Reference Examples

4-4

One frame of the source video and the two regions are shown from left to right.

The Unit Delay block on the top level of the model is to time-align the matrices for a fair comparison.

Generate HDL Code

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command:

makehdl('ROISelectionHDL/ROI Selection')

To generate a test bench, use the following command:

makehdltb('ROISelectionHDL/ROI Selection')

See Also
Blocks
Pixels To Frame | Frame To Pixels

 Select Region of Interest

4-5

Select Regions for Vertical Reuse
This example shows how to divide a frame into tiled regions of interest (ROIs) and use those regions
to configure the ROI Selector block for vertical reuse.

Vertical reuse means dividing each frame into vertically-aligned regions where each column of
regions shares a pixel stream. This arrangement enables parallel processing of each column, and the
reuse of downstream processing logic for each region in the column.

Set up the size of the frame.

frmActiveLines = 240;
frmActivePixels = 320;

Divide the frame into equally-sized vertically-aligned regions, or tiles. The
visionhdlframetoregions function returns an array of such regions, where each region is defined
by four coordinates, and is of the form [hPos vPos hSize vSize]. These tile counts divide evenly into
the frame dimensions, so no remainder pixels exist. The output regions cover the entire frame.

numHorTiles = 2;
numVerTiles = 2;
regions = visionhdlframetoregions(frmActivePixels,frmActiveLines,numHorTiles,numVerTiles)

regions =

 1 1 160 120
 161 1 160 120
 1 121 160 120
 161 121 160 120

The ROI Selector block in the Simulink model has the Reuse output ports for vertically aligned
regions parameter selected, and uses the regions variable to define its output streams. The block
has one output pixel stream per column of regions.

open_system('TiledROIHDL')

4 Block Reference Examples

4-6

The start and end signals define each region in the pixel stream. When you run the model, you can
see the output tiled regions changing in the Left Viewer and Right Viewer windows. The example
performs opposite gamma correction operations on the left and right tiles, and then reassembles the
four tiles into a complete frame by manipulating the pixelcontrol signals.

The blanking interval required by the downstream processing algorithm must be less than the
interval between tiles. The blanking interval after each region is less than one line of pixels, so
operations that require a vertical blanking interval, like those that use a line buffer, do not work. The
gamma correction operation uses a lookup table that does not require a blanking interval.

sim('TiledROIHDL')

 Select Regions for Vertical Reuse

4-7

4 Block Reference Examples

4-8

See Also
ROI Selector | visionhdlframetoregions

 Select Regions for Vertical Reuse

4-9

Construct a Filter Using Line Buffer
This example shows how to use the Line Buffer block to extract neighborhoods from an image for
further processing. The model constructs a separable Gaussian filter.

Inside the HDL Algorithm subsystem, the Line Buffer block is configured for a 5-by-5 neighborhood.
The output is a 5-by-1 column vector. The Gain and Sum blocks implement separate horizontal and
vertical components of a 5-by-5 Gaussian filter with a 0.75 standard deviation. After vertical filtering,
the model stores the column sums in a shift register that creates a 1-by-5 row vector. The row values
are filtered again to calculate the new central pixel value of each neighborhood.

You can generate HDL code from the HDL Algorithm subsystem. You must have the HDL Coder™
software installed to run this command.

makehdl('SeparableFilterSimpleHDL/HDL Algorithm')

To generate an HDL test bench, use this command.

4 Block Reference Examples

4-10

makehdltb('SeparableFilterSimpleHDL/HDL Algorithm')

See Also
Blocks
Frame To Pixels

Objects
visionhdl.LineBuffer

 Construct a Filter Using Line Buffer

4-11

Convert RGB Image to YCbCr 4:2:2 Color Space
This example shows how to convert a pixel stream from R'G'B' color space to Y'CbCr 4:2:2 color
space.

The model imports a 480p RGB image, then the Frame to Pixels block converts it to a pixel stream.
Inside the HDL Algorithm subsystem, the Color Space Converter and Chroma Resampler blocks
convert the pixel stream to YCbCr 4:2:2 format.

The waveform of the input and output pixel stream of the Chroma Resampler block shows the
downsampling of the CbCr component values. The latency of the Chroma Resampler block depends
on the size of the antialiasing filter. This example uses the default filter, which has 29 taps.

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command.

makehdl('ChromaResampleExample/HDL Algorithm')

4 Block Reference Examples

4-12

To generate the test bench, use the following command. Note that test bench generation takes a long
time due to the large data size. Consider reducing the simulation time before generating the test
bench.

makehdltb('ChromaResampleExample/HDL Algorithm')

The part of the model between the Frame to Pixels and Pixels to Frame blocks can be implemented on
an FPGA.

See Also
Blocks
Frame To Pixels | Color Space Converter | Chroma Resampler

 Convert RGB Image to YCbCr 4:2:2 Color Space

4-13

Compute Negative Image
Create the negative of an image by looking up the opposite pixel values in a table.

For a hardware-compatible design, the model converts the input video to a stream of pixel values. The
Frame to Pixels and Pixels to Frame blocks are configured to match the format of the video source.

The Pixel-Stream Lookup Table subsystem contains a Lookup Table block, configured with inversion
data. The input pixel data type is uint8, so the negative value is 255 - pixel, or
linspace(255,0,256). The output pixel data type is the same as the data type of the table
contents, in this case, uint8.

To generate and check the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command:

makehdl('LookupTableHDL/Pixel-Stream Lookup Table')

To infer a RAM to implement the lookup table, the LUTRegisterResetType property is set to none.
To access this property, right-click the Lookup Table block inside the subsystem, and navigate to
HDL Coder > HDL Block Properties.

To generate a test bench for the generated HDL code, use the following command:

makehdltb('LookupTableHDL/Pixel-Stream Lookup Table')

See Also
Blocks
Frame To Pixels | Lookup Table

4 Block Reference Examples

4-14

Adapt Image Filter Coefficients from Frame to Frame
This example shows how to use programmable coefficients to correct a time-varying impairment on
the input video.

There are many different techniques for filtering image and video signals that require filter
coefficients that vary from frame to frame. To dynamically change the coefficients of the Image Filter
block, set the Filter coefficients source parameter to Input port. The Image Filter block samples
the input coefficient port at the beginning of each frame.

The Example Model

The example model applies a brightness impairment to the input video, and the HDL Filter
subsystem calculates filter coefficients for each frame and corrects the impairment. The model
includes three video viewers: one for the original input video, another for the impaired video, and the
third for the result of the filter that counteracts the impairment.

The model also includes Frame to Pixels and Pixels to Frame blocks to convert the matrix format
video to streaming format suitable for HDL modeling.

The Impairment

The impairment in this model is brightness modulation using a slow sine wave. Since the impairment
is modeled purely behaviorally, the first step is to convert the image to double-precision values. The
16-bit counter counts up at the frame rate and the counter value is multiplied by 2*pi/40. The sine
wave output is scaled down by 0.3 and a bias of 1.0 is then added. These calculations result in a
+/-30% change in brightness over a period of 40 frames. After applying the impairment, the model
converts back to uint8 by using rounding with saturation.

 Adapt Image Filter Coefficients from Frame to Frame

4-15

The Filter Algorithm

The HDL Algorithm subsystem starts by extracting a region of interest in the center of the image.
Since this model is configured for a 320x240 video source, it uses a 100x100 region in the center of
the video stream.

The Image Statistics block finds the mean of that central region. A new mean is computed for each
100x100 frame. The block sets the validOut port to true to indicate when the new mean is valid.

Compute the Scaled Grand Mean

The Adapt Grand Mean subsystem computes the correction factor required to counteract the
impairment.

You could use central-region-mean brightness directly, with a "gray-world" assumption that the
average brightness is mid-scale (128 in this case). But, a more accurate approach is to use the
previous brightness means, with the assumption that the average brightness does not change quickly
frame to frame.

Forming a mean of means is known as a grand mean, but that calculation would give equal weight to
the past frames. Instead, the subsystem weights the past frames with an exponential fractional decay
with the coefficients [1 1/2 1/4 1/8 1/16 1/32 1/64 1/64]. The last coefficient would
normally be 1/128 but by adjusting that value, the sum of the weights becomes exactly 2, making the
normalizing factor a simple shift operation. Note that the initial value of all the delay line registers is
mid-scale (128) to avoid large start-up transients in the correction.

4 Block Reference Examples

4-16

The subsystem finds the correction factor using the current mean and the weighted grand mean.
Since the grand mean scaled up by 2, if you subtract the current mean from it, the resulting value is
the weighted grand mean plus or minus the error term in the direction of correcting the error.

The correction is then scaled by 2^-7 and sent to the output port. A normalization could be applied
here by dividing by the grand mean, but in practice, simple scaling works well enough.

Apply the Correction

The correction output from the Adapt Grand Mean subsystem is then used to scale the filter
coefficients, in this case a Gaussian filter of size 5x5 with a standard deviation of the default 0.5. In
the actual FPGA this filter uses 25 multipliers. Pipelining is of no concern here since these values are
computed well before they are needed. The block samples the coefficient port when the vStart
signal in the input ctrl bus is true.

Going Further

In this simple example, you could alternatively apply the correction factor to the scalar pixel stream
and then filter. The architecture shown can expand for more complex adaptive changes in the filter
coefficients.

The 5x5 multiply of the correction factor with the gaussian coefficients could be implemented as a
single serial multiplier rather than 25 parallel multipliers. To achieve this HDL implementation,
include the Product block in a Subsystem, and right-click the Subsystem to open the HDL Block
Properties. Set the SharingFactor property to 25 to implement a single time-multiplexed multiplier.

 Adapt Image Filter Coefficients from Frame to Frame

4-17

With this setting, the multiply operation uses a 25-times faster clock than the rest of the design.
Consider your required pixel clock speed and whether your device can accommodate the faster rate.

See Also
Blocks
Image Filter | ROI Selector | Image Statistics

4 Block Reference Examples

4-18

Video Stabilization
This example shows how to implement a feature-based video stabilization algorithm for FPGAs.

This algorithm helps reduce shaking between frames. Digital video stabilization techniques provide a
more feasible and economical solution than a physical stabilizer.

This example implements the same algorithm as the “Video Stabilization Using Point Feature
Matching” (Computer Vision Toolbox) example. This video stabilization algorithm comprises these
steps.

1 Features from accelerated segment test (FAST) feature detector — Detect corners as features to
match between the two frames.

2 Binary robust independent elementary features (BRIEF) descriptor — Calculate a unique
description for each feature.

3 Feature matching — Match each feature description with its corresponding feature in the other
frame .

4 Random sample consensus (RANSAC) affine transformation estimation — Calculate a transform
that describes the movement of the second frame relative to the first one.

The videoStabilization subsystem has four output ports.

• ransac_done indicates the completion of RANSAC.
• matrix_H is the transform matrix in the form [[a, d, 0], [b, e, 0], [c, f, 1]].
• orb_done indicates the ORB (oriented FAST rotated BRIEF) part is done.
• matched_points is the matched points from ORB matching.

The last two output signals are for additional information or debugging.

modelname = 'VideoStabilizationHDL';
open_system(modelname);
set_param(modelname,'SampleTimeColors','on');
set_param(modelname,'Open','on');
set(allchild(0),'Visible','off');

These images show consecutive frames from a camera.

 Video Stabilization

4-19

imgA = imread('VideoStabilizationHDLExample_img_0.png');
imgB = imread('VideoStabilizationHDLExample_img_1.png');
figure; imshowpair(imgA, imgB, 'montage');
title(['Frame A', repmat(' ',[1 70]), 'Frame B']);

To highlight the difference, the figure shows a red-cyan color composite to show the pixel-wise
difference between them. Frame A is shown in red, and frame B is shown in cyan.

figure; imshowpair(imgA,imgB,'ColorChannels','red-cyan');

4 Block Reference Examples

4-20

FAST Feature Detection

This part of the algorithm follows the design concept outlined in the “FAST Corner Detection” on
page 2-53 example to design a 9-16 FAST detector. The 9-16 FAST feature point detector finds the
pixel value difference between the central pixel and its surrounding pixels, shown in this figure.

If seven of 12 pixels have a larger pixel value difference than a specified threshold, the detector
considers the central point as a feature point. Then, the NonMaxSuppress subsystem filters out
features that have less than the maximum metric within a 5-by-5 patch window. The figure shows the
FAST subsystem.

open_system([modelname '/videoStabilization/oFAST_rBRIEF/FAST_1'],'force');

This figure shows the detected corners.

imgA_fast = imread('VideoStabilizationHDLExample_a_fast.png');
imgB_fast = imread('VideoStabilizationHDLExample_b_fast.png');
figure; imshowpair(imgA_fast, imgB_fast, 'montage');
title(['Corners in Frame A', repmat(' ',[1 40]),'Corners in Frame B']);

 Video Stabilization

4-21

BRIEF Descriptor Generation

The purpose of a feature descriptor is to generate a unique string for each feature point. The
algorithm uses these strings to match points between frames. The BRIEF descriptor generates a
binary vector for each feature point returned from corner detection by comparing the pixel values in
a fixed pattern [3]. This example uses oriented FAST features (oFAST) to increase robustness to
image rotation. The oFAST algorithm rotates each image patch to align it to a common direction
before generating its binary vector. The angle of rotation is the angle between the intensity centroids
of both x- and y-axis, as defined by this equation.

The algorithm calculates the intensity centroid by using a circular patch. In this case, the radius of
the circle is 11. The algorithm calculates the weighted sum of a square patch and then subtracts the
values at the corners. This figure shows the creation of a circular patch from a square patch.

After intensity centroid calculation, the Complex to Magnitude-Angle block computes the rotation
angle. The figure shows the BRIEF descriptor generator.

open_system([modelname '/videoStabilization/oFAST_rBRIEF/BRIEF_DESC_GEN_1/IntensityCentroid'],'force');

4 Block Reference Examples

4-22

Before applying the fixed pattern, the BRIEF block rotates this circular patch by the computed angle.
The fixed pattern used in this model comes from OpenCV software [3].

open_system([modelname '/videoStabilization/oFAST_rBRIEF/BRIEF_DESC_GEN_1/descriptor_gen'],'force');

Because the BRIEF algorithm compares the pixel value of each fixed pair, the description generator is
an array of comparators. The model stores the output binary vectors in the on-chip memory. The
example supports 1024 features by default. You can change the number of features by setting the
Estimated number of feature points parameter of the oFAST_rBRIEF subsystem. This parameter
configures the size of the Simple Dual Port RAM blocks in the BRIEF_DESC_GEN_1 and
descriptor_memory subsystems. This figure shows the BRIEF descriptor generation subsystem.

open_system([modelname '/videoStabilization/oFAST_rBRIEF/BRIEF_DESC_GEN_1'],'force');

Feature Matching

This figure shows the matching process that uses the binary BRIEF feature descriptors.

 Video Stabilization

4-23

Because of the complexity of implementing sorting algorithms on hardware, this example implements
a simple bubble-sorting algorithm to find the 64 best matched point pairs from two images. The
bubble-sorting algorithm consumes fewer resources than a parallel sort. Because each image
typically has hundreds of feature points, finding each pair of points would cost hundreds of clock
cycles if you performed exhaustive matching. The time used by bubble sorting is much shorter than
an exhaustive match.

open_system([modelname '/videoStabilization/oFAST_rBRIEF/BRIEF_MATCH'],'force');

4 Block Reference Examples

4-24

This image shows the results of matching feature points.

 Video Stabilization

4-25

RANSAC Affine Transformation Estimation

RANSAC is a common algorithm for finding an optimal affine transform. The key idea of RANSAC is
to repeatedly pick three random point pairs, and then calculate the affine transform matrix. The
algorithm stops repeating when either 95% of the point pairs match (error is less than 2 pixels) or the
algorithm completes the maximum number of iterations. You can change these parameters in the
RANSAC subsystem mask.

open_system([modelname '/videoStabilization/RANSAC'],'force');

The standard procedure for RANSAC calculation comprises these steps.

1 Random selection — To reduce the computation burden of RANSAC, give the algorithm only the
best matched 64 point pairs. The linear-feedback shift register (LFSR) randomly selects 3 of
these 64 point pairs.

4 Block Reference Examples

4-26

2 Normalization — Normalize point location (x,y) into 1.x format. This normalization is critical to
guarantee a stable result from RANSAC.

3 Calculate affine matrix — Solve linear equations with six variables. This block implements the
numerical solution of these equations. Because additional latency at this step does not affect the
throughput of the design, this subsystem implements a fully pipelined simple divider. The simple
divider uses fewer resources than other divider implementations for hardware. #Denormalization
— Convert the point location back to (x,y) format. This operation is the inverse of normalization.

Model Configuration

You can configure these parameters on the subsystems.

Nonmaximal suppression — To reduce processing of extra features, enable nonmaximal
suppression. You can also select the patch size. Typical patch sizes are five or seven pixels. Larger
patch sizes result in fewer features with low FAST scores, but longer latency.

Minimum contrast for FAST — The typical range for this threshold is 15 to 20, but the value varies
for different applications.

Estimated number of feature points — This parameter determines the depth of on-chip memory.
This parameter is defined by this equation.

, where is the estimated number of features.

For example, the default value is 1000, which results in an on-chip memory depth of 1024 to store
feature descriptors.

Maximum random trials — The default number of iterations is 1000. This value is usually less than
2000.

Confidence of finding maximum number of inliers — Percentage of point pairs matched. Because
this algorithm uses only the 64 best-matched pairs, this example uses a confidence value of 95%. If
your design uses more point pairs, you can reduce this parameter.

 Video Stabilization

4-27

Maximum distance from point to projection — The recommended range of this parameter is from
1.5 to 2.

Performance

The figure shows the stabilization result obtained by applying the generated affine transform to the
second input frame.

Because the camera is mounted on a moving vehicle, it has a different relative speed to the ground
and to other vehicles on the road. Therefore, the matched point varies according to its position on the
image. One way to extend this algorithm for applications with very large object size changes is to use
an image pyramid to find features at different scales.

This design takes about 5 minutes to run an HDL simulation for 240p image/video with no more than
1024 feature points. This table shows the resource consumption on the Xilinx® Zynq®-7000 SoC
ZC706 development kit.

4 Block Reference Examples

4-28

References

[1] Rosten, E., and T. Drummond. "Fusing Points and Lines for High Performance Tracking."
Proceedings of the IEEE International Conference on Computer Vision 2 (October 2005): 1508-1511.

[2] Rosten, E., and T. Drummond. "Machine Learning for High-Speed Corner Detection." Computer
Vision - ECCV 2006 Lecture Notes in Computer Science (2006): 430-43. doi:10.1007/11744023_34.

[3] "OpenCV: Open Source Computer Vision Library" https://github.com/opencv/opencv, 2017

[4] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.. "ORB: An efficient alternative to SIFT or
SURF." Proceedings of the IEEE International Conference on Computer Vision (2011): 2564-2571.

[5] Fischler, M.A., and Bolles, R.C.. "Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography." Communications of the ACM 24(6):
381-395.

 Video Stabilization

4-29

https://github.com/opencv/opencv

Simulation Data Inspector

• “View Data in the Simulation Data Inspector” on page 5-2
• “Import Data from a CSV File into the Simulation Data Inspector” on page 5-11
• “Microsoft Excel Import, Export, and Logging Format” on page 5-16
• “Configure the Simulation Data Inspector” on page 5-24
• “How the Simulation Data Inspector Compares Data” on page 5-32
• “Save and Share Simulation Data Inspector Data and Views” on page 5-37
• “Inspect and Compare Data Programmatically” on page 5-43
• “Limit the Size of Logged Data” on page 5-48

5

View Data in the Simulation Data Inspector
You can use the Simulation Data Inspector to visualize the data you generate throughout the design
process. Simulation data that you log in a Simulink model logs to the Simulation Data inspector. You
can also import test data and other recorded data into the Simulation Data Inspector to inspect and
analyze it alongside the logged simulation data. The Simulation Data Inspector offers several types of
plots, which allow you to easily create complex visualizations of your data.

View Logged Data
Logged signals as well as outputs and states logged using the Dataset format automatically log to
the Simulation Data Inspector when you simulate a model. You can also record other kinds of
simulation data so the data appears in the Simulation Data Inspector at the end of the simulation. To
see states and output data logged using a format other than Dataset in the Simulation Data
Inspector, open the Configuration Parameters dialog box and, in the Data Import/Export pane,
select the Record logged workspace data in Simulation Data Inspector parameter.

Note When you log states and outputs using the Structure or Array format, you must also log
time for the data to record to the Simulation Data Inspector.

The Simulation Data Inspector displays available data in the table in the Inspect pane. To plot a
signal, select the check box next to the signal. You can modify the layout and add different
visualizations to analyze the simulation data. For more information, see “Create Plots Using the
Simulation Data Inspector” (Simulink).

5 Simulation Data Inspector

5-2

The Simulation Data Inspector manages incoming simulation data using the archive. By default, the
previous run moves to the archive when you start a new simulation. You can plot signals from the
archive, or you can drag runs of interest back into the work area.

Import Data from the Workspace or a File
You can import data from the base workspace or from a file to view on its own or alongside simulation
data. The Simulation Data Inspector supports all built-in data types and many data formats for
importing data from the workspace. In general, whatever the format, sample values must be paired
with sample times. The Simulation Data Inspector allows up to 8000 channels per signal in a run
created from imported workspace data.

You can also import data from these types of files:

• MAT file
• CSV file — Format data as shown in “Import Data from a CSV File into the Simulation Data

Inspector” (Simulink).
• Microsoft® Excel® file — Format data as described in “Microsoft Excel Import, Export, and

Logging Format” (Simulink).
• MDF file — MDF file import is supported for Linux® and Windows® operating systems. The MDF
file must have a .mdf, .mf4, .mf3, .data, or .dat file extension and contain data with only
integer and floating data types.

 View Data in the Simulation Data Inspector

5-3

• ULG file — Flight log data import requires a UAV Toolbox license.

To import data from the workspace or from a file that is saved in a data or file format that the
Simulation Data Inspector does not support, you can write your own workspace data or file reader to
import the data using the io.reader class. You can also write a custom reader to use instead of the
built-in reader for supported file types. For examples, see:

• “Import Data Using a Custom File Reader” (Simulink)
• “Import Workspace Variables Using a Custom Data Reader” (Simulink)

To import data, select the Import button in the Simulation Data Inspector.

In the Import dialog, you can choose to import data from the workspace or from a file. The table
below the options shows data available for import. If you do not see your workspace variable or file
contents in the table, that means the Simulation Data Inspector does not have a built-in or registered
reader that supports that data. You can select which data to import using the check boxes, and you
can choose whether to import that data into an existing run or a new run.

5 Simulation Data Inspector

5-4

When you import data into a new run, the run always appears in the work area. You can manually
move imported runs to the archive.

View Complex Data
To view complex data in the Simulation Data Inspector, import the data or log the signals to the
Simulation Data Inspector. You can control how to visualize the complex signal using the Properties
pane in the Simulation Data Inspector and in the Instrumentation Properties for the signal in the
model. To access the Instrumentation Properties for a signal, right-click the logging badge for the
signal and select Properties.

You can specify the Complex Format as Magnitude, Magnitude-Phase, Phase, or Real-Imaginary. If
you select Magnitude-Phase or Real-Imaginary for the Complex Format, the Simulation Data
Inspector plots both components of the signal when you select the check box for the signal. For
signals in Real-Imaginary format, the Line Color specifies the color of the real component of the
signal, and the imaginary component is a different shade of the Line Color. For example, the
Rectangular QAM Modular Baseband signal on the lower graph displays the real component of

 View Data in the Simulation Data Inspector

5-5

the signal in light blue, matching the Line Color parameter, and the imaginary component is shown
in a darker shade of blue.

For signals in Magnitude-Phase format, the Line Color specifies the color of the magnitude
component, and the phase is displayed in a different shade of the Line Color.

View String Data
You can log and view string data with your signal data in the Simulation Data Inspector. For example,
consider this simple model. The value of the sine wave block controls whether the switch sends a
string reading Positive or Negative to the output.

5 Simulation Data Inspector

5-6

The plot shows the results of simulating the model. The string signal is shown at the bottom of the
graphical viewing area. The value of the signal is displayed inside a band, and transitions in the string
signal's value are marked with criss-crossed lines.

You can use cursors to inspect how the string signal values correspond with the sine signal's values.

 View Data in the Simulation Data Inspector

5-7

When you plot multiple string signals on a plot, the signals stack in the order they were simulated or
imported, with the most recent signal positioned at the top. For example, you might consider the
effect of changing the phase of the sine wave controlling the switch.

5 Simulation Data Inspector

5-8

View Frame-Based Data
Processing data in frames rather than point by point provides a performance boost needed in some
applications. To view frame-based data in the Simulation Data Inspector, you have to specify that the
signal is frame-based in the Instrumentation Properties for the signal. To access the
Instrumentation Properties dialog for a signal, right-click the signal's logging badge and select
Properties. To specify a signal as frame-based, select Columns as channels (frame based) for
Input processing.

View Event-Based Data
You can log or import event data to the Simulation Data Inspector. To view the logged event-based
data, select the check box next to Send: 1. The Simulation Data Inspector displays the data as a
stem plot, with each stem representing the number of events that occurred for a given sample time.

 View Data in the Simulation Data Inspector

5-9

See Also

More About
• Inspect Simulation Data (Simulink)
• Compare Simulation Data (Simulink)
• Share Simulation Data Inspector Data and Views on page 5-37
• Decide How to Visualize Data (Simulink)
• Dataset Conversion for Logged Data (Simulink)

5 Simulation Data Inspector

5-10

Import Data from a CSV File into the Simulation Data Inspector
To import data into the Simulation Data Inspector from a CSV file, format the data in the CSV file.
Then, you can import the data using the Simulation Data Inspector UI or the
Simulink.sdi.createRun function.

Tip When you want to import data from a CSV file where the data is formatted differently from the
specification in this topic, you can write your own file reader for the Simulation Data Inspector using
the io.reader class.

Basic File Format
In the simplest format, the first row in the CSV file is a header that lists the names of the signals in
the file. The first column is time. The name for the time column must be time, and the time values
must increase monotonically. The rows below the signal names list the signal values that correspond
to each time step.

The import operation does not support time data that includes Inf or NaN values or signal data that
includes Inf values. Empty or NaN signal values render as missing data. All built-in data types are
supported.

Multiple Time Vectors
When your data includes signals with different time vectors, the file can include more than one time
vector. Every time column must be named time. Time columns specify the sample times for signals to
the right, up to the next time vector. For example, the first time column defines the time for signal1
and signal2, and the second time column defines the time steps for signal3.

 Import Data from a CSV File into the Simulation Data Inspector

5-11

Signal columns must have the same number of data points as the associated time vector.

Signal Metadata
You can specify signal metadata in the CSV file to indicate the signal data type, units, interpolation
method, block path, and port index. List metadata for each signal in rows between the signal name
and the signal data. Label metadata according to this table.

Signal Property Label Value
Data type Type: Built-in data type.
Units Unit: Supported unit. For example,

Unit: m/s specifies units of
meters per second.

For a list of supported units,
enter showunitslist in the
MATLAB Command Window.

Interpolation method Interp: linear, zoh for zero order
hold, or none.

Block Path BlockPath: Path to the block that generated
the signal.

Port Index PortIndex: Integer.

You can also import a signal with a data type defined by an enumeration class. Instead of using the
Type: label, use the Enum: label and specify the value as the name of the enumeration class. The
definition for the enumeration class must be saved on the MATLAB path.

When an imported file does not specify signal metadata, the Simulation Data Inspector assumes
double data type and linear interpolation. You can specify the interpolation method as linear, zoh
(zero-order hold), or none. If you do not specify units for the signals in your file, you can assign units
to the signals in the Simulation Data Inspector after you import the file.

You can specify any combination of metadata for each signal. Leave a blank cell for signals with less
specified metadata.

5 Simulation Data Inspector

5-12

Import Data from a CSV File
You can import data from a CSV file using the Simulation Data Inspector UI or using the
Simulink.sdi.createRun function.

To import data using the UI, open the Simulation Data Inspector using the Simulink.sdi.view
function or the Data Inspector button in the Simulink™ toolstrip. Then, click the Import button.

In the Import dialog, select the option to import data from a file and navigate in the file system to
select the file. After you select the file, data available for import shows in the table. You can choose
which signals to import and whether to import them to a new or existing run. This example imports
all available signals to a new run. After selecting the options, click the Import button.

 Import Data from a CSV File into the Simulation Data Inspector

5-13

When you import data into a new run using the UI, the new run name includes the run number
followed by Imported_Data.

When you import data programmatically, you can specify the name of the imported run.

csvRunID = Simulink.sdi.createRun('CSV File Run','file','csvExampleData.csv');

See Also
Functions
Simulink.sdi.createRun

More About
• “View Data in the Simulation Data Inspector” (Simulink)

5 Simulation Data Inspector

5-14

• “Microsoft Excel Import, Export, and Logging Format” (Simulink)
• “Import Data Using a Custom File Reader” (Simulink)

 Import Data from a CSV File into the Simulation Data Inspector

5-15

Microsoft Excel Import, Export, and Logging Format
Using the Simulation Data Inspector or Simulink Test, you can import data from a Microsoft Excel file
or export data to a Microsoft Excel file. You can also log data to an Excel file using the Record block.
The Simulation Data Inspector, Simulink Test, and the Record block all use the same file format, so
you can use the same Microsoft Excel file with multiple applications.

Tip When the format of the data in your Excel file does not match the specification in this topic, you
can write your own file reader to import the data using the io.reader class.

Basic File Format
In the simplest format, the first row in the Excel file is a header that lists the names of the signals in
the file. The first column is time. The name for the time column must be time, and the time values
must increase monotonically. The rows below the signal names list the signal values that correspond
to each time step.

The import operation does not support time data that includes Inf or NaN values or signal data that
includes Inf values. Empty or NaN signal values imported from the Excel file render as missing data
in the Simulation Data Inspector. All built-in data types are supported.

Multiple Time Vectors
When your data includes signals with different time vectors, the file can include more than one time
vector. Every time column must be named time. Time columns specify the sample times for signals to
the right, up to the next time vector. For example, the first time column defines the time for signal1
and signal2, and the second time column defines the time steps for signal3.

5 Simulation Data Inspector

5-16

Signal columns must have the same number of data points as the associated time vector.

Signal Metadata
The file can include metadata for signals such as data type, units, and interpolation method. The
metadata is used to determine how to plot the data, how to apply unit and data conversions, and how
to compute comparison results. For more information about how metadata is used in comparisons,
see “How the Simulation Data Inspector Compares Data” (Simulink).

Metadata for each signal is listed in rows between the signal names and the signal data. You can
specify any combination of metadata for each signal. Leave a blank cell for signals with less specified
metadata.

Label each piece of metadata according to this table. The table also indicates which tools and
operations support each piece of metadata. When an imported file does not specify signal metadata,
double data type, linear interpolation, and union synchronization are used.

 Microsoft Excel Import, Export, and Logging Format

5-17

Property Descriptions

Signal
Property

Label Values Simulation
Data Inspector
Import

Record Block
Logging and
Simulation
Data Inspector
Export

Simulink Test
Import and
Export

Data type Type: Built-in data
type.

Supported Supported Supported

Units Unit: Supported unit.
For example,
Unit: m/s
specifies units
of meters per
second.

For a list of
supported units,
enter
showunitslis
t in the
MATLAB
Command
Window.

Supported Supported Supported

Interpolation
method

Interp: linear, zoh
for zero order
hold, or none.

Supported Supported Supported

Synchronization
method

Sync: union or
intersection
.

Supported Not Supported

Metadata not
included in
exported file.

Supported

Relative
tolerance

RelTol: Percentage,
represented as
a decimal. For
example,
RelTol: 0.1
specifies a 10%
relative
tolerance.

Supported Not Supported

Metadata not
included in
exported file.

Supported

Absolute
tolerance

AbsTol: Numeric value. Supported Not Supported

Metadata not
included in
exported file.

Supported

Time tolerance TimeTol: Numeric value,
in seconds.

Supported Not Supported

Metadata not
included in
exported file.

Supported

5 Simulation Data Inspector

5-18

Signal
Property

Label Values Simulation
Data Inspector
Import

Record Block
Logging and
Simulation
Data Inspector
Export

Simulink Test
Import and
Export

Leading
tolerance

LeadingTol: Numeric value,
in seconds.

Supported

Only visible in
Simulink Test.

Not Supported

Metadata not
included in
exported file.

Supported

Lagging
tolerance

LaggingTol: Numeric Value,
in seconds.

Supported

Only visible in
Simulink Test.

Not Supported

Metadata not
included in
exported file.

Supported

Block Path BlockPath: Path to the
block that
generated the
signal.

Supported Supported Supported

Port Index PortIndex: Integer. Supported Supported Supported
Name Name: Signal name Supported Not Supported

Metadata not
included in
exported file.

Supported

User-Defined Data Types
In addition to built-in data types, you can use other labels in place of the DataType: label to specify
fixed-point, enumerated, alias, and bus data types.

 Microsoft Excel Import, Export, and Logging Format

5-19

Property Descriptions

Data Type Label Values Simulation
Data Inspector
Import

Record Block
Logging and
Simulation
Data Inspector
Export

Simulink Test
Import and
Export

Enumeration Enum: Name of the
enumeration
class.

Supported

Enumeration
class definition
must be saved
on the MATLAB
path.

Supported

Enumeration
class definition
must be saved
on the MATLAB
path.

Supported

Enumeration
class definition
must be saved
on the MATLAB
path.

Alias Alias: Name of a
Simulink.Ali
asType object
in the MATLAB
workspace.

Supported

For matrix and
complex
signals, specify
the alias data
type on the first
channel.

Not Supported Supported

For matrix and
complex
signals, specify
the alias data
type on the first
channel.

Fixed-point Fixdt: • fixdt
constructor.

• Name of a
Simulink.
NumericTy
pe object in
the MATLAB
workspace.

• Name of a
fixed-point
data type as
described in
“Fixed-Point
Numbers in
Simulink”
(Fixed-Point
Designer).

Supported Not Supported Supported

Bus Bus: Name of a
Simulink.Bus
object in the
MATLAB
workspace.

Supported Not Supported Supported

When you specify the type using the name of a Simulink.Bus object and the object is not in the
MATLAB workspace, the data still imports from the file. However, individual signals in the bus use
data types described in the file rather than data types defined in the Simulink.Bus object.

5 Simulation Data Inspector

5-20

Complex, Multidimensional, and Bus Signals
You can import and export complex, multidimensional, and bus signals using an Excel file. The signal
name for a column of data indicates whether that data is part of a complex, multidimensional, or bus
signal. Excel file import and export do not support array of bus signals.

Multidimensional signal names include index information in parentheses. For example, the signal
name for a column might be signal1(2,3). When you import data from a file that includes
multidimensional signal data, elements in the data not included in the file take zero sample values
with the same data type and complexity as the other elements.

Complex signal data is always in real-imaginary format. Signal names for columns containing complex
signal data include (real) and (imag) to indicate which data each column contains. When you
import data from a file that includes imaginary signal data without specifying values for the real
component of that signal, the signal values for the real component default to zero.

Multidimensional signals can contain complex data. The signal name includes the indication for the
index within the multidimensional signal and the real or imaginary tag. For example, signal1(1,3)
(real).

Dots in signal names specify the hierarchy for bus signals. For example:

• bus.y.a
• bus.y.b
• bus.x

Tip When the name of your signal includes characters that could make it appear as though it were
part of a matrix, complex signal, or bus, use the Name metadata option to specify the name you want
the imported signal to use in the Simulation Data Inspector and Simulink Test.

Function-Call Signals
Signal data specified in columns before the first time column is imported as one or more function-call
signals. The data in the column specifies the times at which the function-call signal was enabled. The
imported signals have a value of 1 for the times specified in the column. The time values for function-
call signals must be double, scalar, and real, and must increase monotonically.

 Microsoft Excel Import, Export, and Logging Format

5-21

When you export data from the Simulation Data Inspector, function-call signals are formatted the
same as other signals, with a time column and a column for signal values.

Simulation Parameters
You can import data for parameter values used in simulation. In the Simulation Data Inspector, the
parameter values are shown as signals. Simulink Test uses imported parameter values to specify
values for those parameters in the tests it runs based on imported data.

Parameter data is specified using two or three columns. The first column specifies the parameter
names, with the cell in the header row for that column labeled Parameter:. The second column
specifies the value used for each parameter, with the cell in the header row labeled Value:.
Parameter data may also include a third column that contains the block path associated with each
parameter, with the cell in the header row labeled BlockPath:. Specify names, values, and block
paths for parameters starting in the first row that contains signal data, below rows used to specify
signal metadata. For example, this file specifies values for two parameters, X and Y.

Multiple Runs
You can include data for multiple runs in a single file. Within a sheet, you can divide data into runs by
labeling data with a simulation number and a source type, such as Input or Output. Specify the
simulation number and source type as additional signal metadata, using the label Simulation: for
the simulation number and the label Source: for the source type. The Simulation Data Inspector
uses the simulation number and source type only to determine which signals belong in each run.
Simulink Test uses the information to define inputs, parameters, and acceptance criteria for tests to
run based on imported data.

You do not need to specify the simulation number and output type for every signal. Signals to the
right of a signal with a simulation number and source use the same simulation number and source
until the next signal with a different source or simulation number. For example, this file defines data
for two simulations and imports into four runs in the Simulation Data Inspector:

• Run 1 contains signal1 and signal2.
• Run 2 contains signal3, X, and Y.
• Run 3 contains signal4.

5 Simulation Data Inspector

5-22

• Run 4 contains signal5.

You can also use sheets within the Microsoft Excel file to divide the data into runs and tests. When
you do not specify simulation number and source information, the data on each sheet is imported into
a separate run in the Simulation Data Inspector. When you export multiple runs from the Simulation
Data Inspector, the data for each run is saved on a separate sheet. When you import a Microsoft Excel
file that contains data on multiple sheets into Simulink Test, you are prompted to specify how to
import the data.

See Also
Simulink.sdi.createRun | Simulink.sdi.exportRun

More About
• “View Data in the Simulation Data Inspector” (Simulink)
• “Import Data from a CSV File into the Simulation Data Inspector” (Simulink)
• “Import Data Using a Custom File Reader” (Simulink)

 Microsoft Excel Import, Export, and Logging Format

5-23

Configure the Simulation Data Inspector
The Simulation Data Inspector supports a wide range of use cases for analyzing and visualizing data.
You can modify preferences in the Simulation Data Inspector to match your visualization and analysis
requirements. The preferences that you specify persist between MATLAB sessions.

By specifying preferences in the Simulation Data Inspector, you can configure options such as:

• How signals and metadata are displayed.
• Which data automatically imports from parallel simulations.
• Where prior run data is retained and how much prior data to store.
• How much memory is used during save operations.
• The system of units used to display signals.

To open the Simulation Data Inspector preferences, click Preferences.

Note You can restore all preferences in the Simulation Data Inspector to default values by clicking
Restore Defaults in the Preferences menu or by using the Simulink.sdi.clearPreferences
function.

Logged Data Size and Location
By default, simulation data logs to disk with data loaded into memory on demand, and the maximum
size of logged data is constrained only by available disk space. You can use the Disk Management
settings in the Simulation Data Inspector to directly control the size and location of logged data.

The Record mode setting specifies whether logged data is retained after simulation. When you
change the Record mode setting to View during simulation only, no logged data is available in the
Simulation Data Inspector or the workspace after the simulation completes. Only use this mode when
you do not want to save logged data. The Record mode setting reverts to View and record data
each time you start MATLAB. Changing the Record mode setting can affect other applications, such
as visualization tools. For details, see “View Data Only During Simulation” (Simulink).

To directly limit the size of logged data, you can specify a minimum amount of free disk space or a
maximum size for the logged data. By default, logged data must leave at least 100 MB of free disk
space with no maximum size limit. Specify the required disk space and maximum size in GB, and
specify 0 to apply no disk space requirement or no maximum size limit.

When you specify a minimum disk space requirement or a maximum size for logged data, you can
also specify whether to prioritize retaining data from the current simulation or data from prior
simulations when approaching the limit. By default, the Simulation Data Inspector prioritizes
retaining data for the current run by deleting data for prior runs. To prioritize retaining prior data,
change the When low on disk space setting to Keep prior runs and stop recording. You see a
warning message when prior runs are deleted and when recording is disabled. If recording is
disabled due to the size of logged data, you need to change the Record Mode back to View and
record data to continue logging data, after you have freed up disk space. For more information, see
“Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data” (Simulink).

5 Simulation Data Inspector

5-24

The Storage Mode setting specifies whether to log data to disk or to memory. By default, data logs to
disk. When you configure a parallel worker to log data to memory, data transfer back to the host is
not supported. Logging data to memory is not supported for rapid accelerator simulations or models
deployed using Simulink Compiler™.

You can also specify the location of the temporary file that stores logged data. By default, data logs to
the temporary files directory on your computer. You may change the file location when you need to
log large amounts of data and a secondary drive provides more storage capacity. Logging data to a
network location can degrade performance.

Programmatic Use

You can programmatically configure and check each preference value.

Preference Functions
Record mode Simulink.sdi.setRecordData

Simulink.sdi.getRecordData
Required Free Space Simulink.sdi.setRequiredFreeSpace

Simulink.sdi.getRequiredFreeSpace
Max Disk Usage Simulink.sdi.setMaxDiskUsage

Simulink.sdi.getMaxDiskUsage
When low on disk space Simulink.sdi.setDeleteRunsOnLowSpace

Simulink.sdi.getDeleteRunsOnLowSpace
Storage Mode Simulink.sdi.setStorageMode

Simulink.sdi.getStorageMode
Storage Location Simulink.sdi.setStorageLocation

Simulink.sdi.getStorageLocation

Archive Behavior and Run Limit
When you run multiple simulations in a single MATLAB session, the Simulation Data Inspector retains
results from each simulation so you can analyze the results together. Use the Simulation Data
Inspector archive to manage runs in the user interface and control the number of runs the Simulation
Data Inspector retains.

You can configure a limit for the number of runs to retain in the archive and whether the Simulation
Data Inspector automatically moves prior runs into the archive.

Manage Runs Using the Archive

By default, the Simulation Data Inspector automatically archives simulation runs. When you simulate
a model, the prior simulation run moves to the archive, and the Simulation Data Inspector updates
the view to show data for aligned signals in the current run.

The archive does not impose functional limitations on the runs and signals it contains. You can plot
signals from the archive, and you can use runs and signals in the archive in comparisons. You can

 Configure the Simulation Data Inspector

5-25

drag runs of interest from the archive to the work area and vice versa whether Automatically
Archive is selected or disabled.

To prevent the Simulation Data Inspector from automatically moving prior simulations runs to the
archive, clear the Automatically archive setting. With automatic archiving disabled, the Simulation
Data Inspector does not move prior runs into the Archive pane or automatically update plots to
display data from the current simulation.

Tip To manually delete the contents of the archive, click Delete archived runs .

Control Number of Runs Retained in Simulation Data Inspector

You can specify a limit for the number of runs to retain in the archive. When the number of runs in
the archive reaches the limit, the Simulation Data Inspector deletes runs in the archive on a first-in,
first-out basis.

The run limit applies only to runs in the archive. For the Simulation Data Inspector to automatically
limit the data it retains by deleting old runs, select Automatically archive and specify a size limit.

By default, the Simulation Data Inspector retains the last 20 runs moved to the archive. To remove
the limit, select No limit. To specify the maximum number of runs to store in the archive, select Last
n runs and enter the limit. A warning occurs if you specify a limit that would delete runs already in
the archive.

Programmatic Use

To configure the Automatically archive option, use the Simulink.sdi.setAutoArchiveMode
function.

To specify the archive run limit, use the Simulink.sdi.setArchiveRunLimit function.

Incoming Run Names and Location
You can configure how the Simulation Data Inspector handles incoming runs from import or
simulation. You can choose whether new runs are added at the top of the work area or the bottom and
specify a naming rule to use for runs created from simulation.

By default, the Simulation Data Inspector adds new runs below prior runs in the work area. The
Archive settings also affect the location of runs. By default, prior runs are moved to the archive when
a new simulation run is created.

The run naming rule is used to name runs created from simulation. You can create the run naming
rule using a mix of literal text that is used in the run name as-is and one or more tokens that
represent metadata about the run. By default, the Simulation Data Inspector names runs using the
run index and model name: Run <run_index>: <model_name>.

Tip To rename an existing run, double-click the name in the work area and enter the new name, or
modify the run name in the Properties pane.

5 Simulation Data Inspector

5-26

Programmatic Use

You can programmatically check and modify the naming rule using the
Simulink.sdi.getRunNamingRule and Simulink.sdi.setRunNamingRule functions. Restore
the naming rule to its default programmatically using the Simulink.sdi.resetRunNamingRule
function.

Signal Metadata to Display
You can control which signal metadata is displayed in the work area of the Inspect pane and in the
results section on the Compare pane in the Simulation Data Inspector. You specify the metadata to
display separately for each pane using the Table Columns preferences in the Inspect and Compare
sections of the Preferences dialog, respectively.

Inspect Pane

By default, the signal name and the line style and color used to plot the signal are displayed on the
Inspect pane. To display different or additional metadata in the work area on the Inspect pane,
select the check box next to each piece of metadata you want to display in the Table Columns
preference in the Inspect section. You can always view complete metadata for the selected signal in
the Inspect pane using the Properties pane.

Note Metadata displayed in the work area on Inspect pane is included when you generate a report
of plotted signals. You can also specify metadata to include in the report regardless of what is
displayed in the work area when you create the report programmatically using the
Simulink.sdi.report function.

Compare Pane

By default, the Compare pane shows the signal name, the absolute and relative tolerances used in
the signal comparison, and the maximum difference from the comparison result. To display different
or additional metadata in the results on the Compare pane, select the check box next to each piece
of metadata you want to display in the Table Columns preference in the Compare section. You can
always view complete metadata for the signals compared for a selected signal result using the
Properties pane, where metadata that differs between the compared signals is highlighted. Signal
metadata displayed on the Compare pane does not affect the contents of comparison reports.

Signal Selection on the Inspect Pane
You can configure how you select signals to plot on the selected subplot in the Simulation Data
Inspector. By default, you use check boxes next to each signal to plot. You can also choose to plot
signals based on selection in the work area. Use Check Mode when creating views and visualizations
that represent findings and analysis of a data set. Use Browse Mode to quickly view and analyze
data sets with a large number of signals.

For more information about creating visualizations using Check Mode, see “Create Plots Using the
Simulation Data Inspector” (Simulink).

For more information about using Browse Mode, see “Visualize Many Logged Signals” (Simulink).

Note To use Browse Mode, your layout must include only Time Plot visualizations.

 Configure the Simulation Data Inspector

5-27

How Signals Are Aligned for Comparison
When you compare runs using the Simulation Data Inspector, the comparison algorithm pairs signals
for signal comparison through a process called alignment. You can align signals between the
compared runs using one or more of the signal properties shown in the table.

Property Description
Data Source Path of the variable in the MATLAB workspace for

data imported from the workspace
Path Block path for the source of the data in its model
SID Simulink identifier

For more information about SIDs, see “Simulink
Identifiers” (Simulink)

Signal Name Name of the signal

You can specify the priority for each piece of metadata used for alignment. The Align By field
specifies the highest priority property used to align signals. The priority drops with each subsequent
Then By field. You must specify a primary alignment property in the Align By field, but you can
leave any number of Then By fields blank.

By default, the Simulation Data Inspector aligns signals between runs according to this flow chart.

For more information about configuring comparisons in the Simulation Data Inspector, see “How the
Simulation Data Inspector Compares Data” (Simulink).

Colors Used to Display Comparison Results
You can configure the colors used to display comparison results using the Simulation Data Inspector
preferences. You can specify whether to use the signal color from the Inspect pane or a fixed color
for the baseline and compared signals. You can also choose colors for the tolerance and the difference
signal.

By default, the Simulation Data Inspector displays comparison results using fixed colors for the
baseline and compared signals. Using a fixed color allows you to avoid the baseline signal color and
compared signal color being either the same or too similar to distinguish.

5 Simulation Data Inspector

5-28

Signal Grouping
You can specify how to group signals within a run in the Simulation Data Inspector. The preferences
apply to both the Inspect and Compare panes and comparison reports. You can group signals by:

• Domain — Signal type. For example, signals created by signal logging have a domain of Signal,
while signals created from logging model outputs have a domain of Outports.

• Physical System Hierarchy — Signal Simscape™ physical system hierarchy. The option to group by
physical system hierarchy is available when you have a Simscape license.

• Data Hierarchy — Signal location within structured data. For example, data hierarchy grouping
reflects the hierarchy of a bus.

• Model Hierarchy — Signal location within model hierarchy. Grouping by model hierarchy can be
helpful when you log data from a model that includes model or subsystem references.

Grouping signals adds rows for the hierarchical nodes, which you can expand to show the signals
within that node. By default, the Simulation Data Inspector groups signals by domain, then by
physical system hierarchy (if you have a Simscape license), and then by data hierarchy.

To remove grouping and display a flat list of signals in each run, select None for all grouping options.

Programmatic Use

To specify how to group signals programmatically, use the Simulink.sdi.setTableGrouping
function.

Data to Stream from Parallel Simulations
When you run parallel simulations using the parsim function, you can stream logged simulation data
to the Simulation Data Inspector. A dot next to the run name in the Inspect pane indicates the status
of the simulation that corresponds to the run, so you can monitor simulation progress while
visualizing the streamed data. You can control whether data streams from a parallel simulation based
on the type of worker the data comes from.

By default, the Simulation Data Inspector is configured for manual import of data from parallel
workers. You can use the Simulation Data Inspector programmatic interface to inspect the data on
the worker and decide whether to send it to the client Simulation Data Inspector for further analysis.
To manually move data from a parallel worker to the Simulation Data Inspector, use the
Simulink.sdi.sendWorkerRunToClient function.

You may want to automatically stream data from parallel simulations that run on local workers or on
local and remote workers. Streaming data from both local and remote workers may affect simulation
performance, depending on how many simulations you run and how much data you log. When you
choose to stream data from local workers or all parallel workers, all logged simulation data
automatically shows in the Simulation Data Inspector.

Programmatic Use

You can configure Simulation Data Inspector support for parallel worker data programmatically using
the Simulink.sdi.enablePCTSupport function.

 Configure the Simulation Data Inspector

5-29

Options for Saving and Loading Session Files
You can specify a maximum amount of memory to use while loading or saving a session file. By
default, the Simulation Data Inspector uses a maximum of 100 MB of memory when you load or save
a session file. You can specify a memory use limit as low as 50 MB.

To reduce the size of the saved session file, you can specify a compression option.

• None — Do not compress saved data.
• Normal — Compress the saved file as much as possible.
• Fastest — Compress the saved file less than Normal compression for faster save time.

Signal Display Units
Signals in the Simulation Data Inspector have two units properties: stored units and display units.
The stored units represent the units of the data saved to disk. The display units specify how the
Simulation Data Inspector displays the data. You can configure the Simulation Data Inspector to use a
system of units to define the display units for all signals. You can choose either the SI or US
Customary system of units, or you can display data using its stored units.

When you use a system of units to define display units for signals in the Simulation Data Inspector,
the display units update for any signal with display units that are not valid for that unit system. For
example, if you select SI units, the display units for a signal may update from ft to m.

Note The system of units you choose to use in the Simulation Data Inspector does not affect the
stored units for any signal. You can convert the stored units for a signal using the convertUnits
function. Conversion may result in loss of precision.

In addition to selecting a system of units, you can specify override units so that all signals of a given
measurement type are displayed using consistent units. For example, if you want to visualize all
signals that represent weight using units of kg, specify kg as an override unit.

Tip For a list of units supported by Simulink, enter showunitslist in the MATLAB Command
Window.

You can also modify the display units for a specific signal using the Properties pane. For more
information, see “Modify Signal Properties in the Simulation Data Inspector” (Simulink).

Programmatic Use

Configure the unit system and override units using the Simulink.sdi.setUnitSystem function.
You can check the current units preferences using the Simulink.sdi.getUnitSystem function.

See Also
Functions
Simulink.sdi.clearPreferences | Simulink.sdi.setRunNamingRule |
Simulink.sdi.setTableGrouping | Simulink.sdi.enablePCTSupport |
Simulink.sdi.setArchiveRunLimit | Simulink.sdi.setAutoArchiveMode

5 Simulation Data Inspector

5-30

More About
• “Iterate Model Design Using the Simulation Data Inspector” (Simulink)
• “How the Simulation Data Inspector Compares Data” (Simulink)
• “Compare Simulation Data” (Simulink)
• “Create Plots Using the Simulation Data Inspector” (Simulink)
• “Modify Signal Properties in the Simulation Data Inspector” (Simulink)

 Configure the Simulation Data Inspector

5-31

How the Simulation Data Inspector Compares Data
You can tailor the Simulation Data Inspector comparison process to fit your requirements in multiple
ways. When comparing runs, the Simulation Data Inspector:

1 Aligns signal pairs in the Baseline and Compare To runs based on the Alignment settings.

The Simulation Data Inspector does not compare signals that it cannot align.
2 Synchronizes aligned signal pairs according to the specified Sync Method.

Values for time points added in synchronization are interpolated according to the specified
Interpolation Method.

3 Computes the difference of the signal pairs.
4 Compares the difference result against specified tolerances.

When the comparison run completes, the results of the comparison are displayed in the navigation
pane.

Status Comparison Result
Difference falls within the specified tolerance.

Difference violates specified tolerance.

The signal does not align with a signal from the
Compare To run.

When you compare signals with differing time intervals, the Simulation Data Inspector compares the
signals on their overlapping interval.

Signal Alignment
In the alignment step, the Simulation Data Inspector decides which signal from the Compare To run
pairs with a given signal in the Baseline run. When you compare signals with the Simulation Data
Inspector, you complete the alignment step by selecting the Baseline and Compare To signals.

The Simulation Data Inspector aligns signals using a combination of their Data Source, Path, SID, and
Signal Name properties.

Property Description
Data Source Path of the variable in the MATLAB workspace for

data imported from the workspace
Path Block path for the source of the data in its model
SID Simulink identifier

For more information about SIDs, see “Simulink
Identifiers” (Simulink)

Signal Name Name of the signal in the model

With the default alignment settings, the Simulation Data Inspector aligns signals between runs
according to this flow chart.

5 Simulation Data Inspector

5-32

You can specify the priority for each of the signal properties used for alignment in the Simulation
Data Inspector Preferences. The Align By field specifies the highest priority property used to align
signals. The priority drops with each subsequent Then By field. You must specify a primary
alignment property in the Align By field, but you can leave any number of the Then By fields blank.

Synchronization
Often, signals that you want to compare don't contain the exact same set of time points. The
synchronization step in Simulation Data Inspector comparisons resolves discrepancies in signals' time
vectors. You can choose union or intersection as the synchronization method.

When you specify union synchronization, the Simulation Data Inspector builds a time vector that
includes every sample time between the two signals. For each sample time not originally present in
either signal, the Simulation Data Inspector interpolates the value. The second graph in the
illustration shows the union synchronization process, where the Simulation Data Inspector identifies
samples to add in each signal, represented by the unfilled circles. The final plot shows the signals
after the Simulation Data Inspector has interpolated values for the added time points. The Simulation
Data Inspector computes the difference using the signals in the final graph, so that the computed
difference signal contains all the data points between the signals.

When you specify intersection synchronization, the Simulation Data Inspector uses only the
sample times present in both signals in the comparison. In the second graph, the Simulation Data
Inspector identifies samples that do not have a corresponding sample for comparison, shown as
unfilled circles. The final graph shows the signals used for the comparison, without the samples
identified in the second graph.

 How the Simulation Data Inspector Compares Data

5-33

The choice between the synchronization options involves a trade off between speed and accuracy. The
interpolation required by union synchronization takes time, but provides a more precise result.
When you use intersection synchronization, the comparison finishes quickly because the
Simulation Data Inspector computes the difference for fewer data points and does not interpolate.
However, some data is discarded and precision lost with intersection synchronization.

Interpolation
The interpolation property of a signal determines how the Simulation Data Inspector displays the
signal and how additional data values are computed in synchronization. You can choose to interpolate
your data with a zero-order hold (zoh) or a linear approximation. You can also specify no
interpolation.

When you specify zoh or none for the Interpolation Method, the Simulation Data Inspector
replicates the data of the previous sample for interpolated sample times. When you specify linear
interpolation, the Simulation Data Inspector uses samples on either side of the interpolated point to
linearly approximate the interpolated value. Typically, discrete signals use zoh interpolation and
continuous signals use linear interpolation. You can specify the Interpolation Method for your
signals in the signal properties.

Tolerance Specification
The Simulation Data Inspector allows you to specify the scope and value of the tolerance for your
signal. You can define a tolerance band using any combination of absolute, relative, and time
tolerance values, and you can specify whether the specified tolerance applies to an individual signal
or to all the signals in a run.

5 Simulation Data Inspector

5-34

Tolerance Scope

In the Simulation Data Inspector, you can specify the tolerance for your data globally or for an
individual signal. Global tolerance values apply to all signals in a run that do not have Override
Global Tol set to yes. You can specify global tolerance values for your data at the top of the
graphical viewing area in the Compare view. To specify signal specific tolerance values, edit the
signal properties and ensure the Override Global Tol property is set to yes.

Tolerance Computation

In the Simulation Data Inspector, you can specify a tolerance band for your run or signal using a
combination of absolute, relative, and time tolerance values. When you specify the tolerance for your
run or signal using multiple types of tolerances, each tolerance can yield a different answer for the
tolerance at each point. The Simulation Data Inspector computes the overall tolerance band by
selecting the most lenient tolerance result for each data point.

When you define your tolerance using only the absolute and relative tolerance properties, the
Simulation Data Inspector computes the tolerance for each point as a simple maximum.

tolerance = max(absoluteTolerance,relativeTolerance*abs(baselineData));

The upper boundary of the tolerance band is formed by adding tolerance to the Baseline signal.
Similarly, the Simulation Data Inspector computes the lower boundary of the tolerance band by
subtracting tolerance from the Baseline signal.

When you specify a time tolerance, the Simulation Data Inspector evaluates the time tolerance first,
over a time interval defined as [(tsamp-tol), (tsamp+tol)] for each sample. The Simulation Data
Inspector builds the lower tolerance band by selecting the minimum point on the interval for each
sample. Similarly, the maximum point on the interval defines the upper tolerance for each sample.

If you specify a tolerance band using an absolute or relative tolerance in addition to a time tolerance,
the Simulation Data Inspector applies the time tolerance first, and then applies the absolute and
relative tolerances to the maximum and minimum points selected with the time tolerance.

 How the Simulation Data Inspector Compares Data

5-35

upperTolerance = max + max(absoluteTolerance,relativeTolerance*max)

lowerTolerance = min - max(absoluteTolerance,relativeTolerance*min)

Limitations
The Simulation Data Inspector does not support comparing:

• Signals of data types int64 or uint64.
• Variable-size signals.

See Also

Related Examples
• “Compare Simulation Data” (Simulink)

5 Simulation Data Inspector

5-36

Save and Share Simulation Data Inspector Data and Views
After you inspect, analyze, or compare your data in the Simulation Data Inspector, you can share your
results with others. The Simulation Data Inspector provides several options for sharing and saving
your data and results, depending on your needs. With the Simulation Data Inspector, you can:

• Save your data and layout modifications in a Simulation Data Inspector session.
• Share your layout modifications in a Simulation Data Inspector view.
• Share images and figures of plots you create in the Simulation Data Inspector.
• Create a Simulation Data Inspector report.
• Export data to the workspace.
• Export data to a file.

Save and Load Simulation Data Inspector Sessions
If you want to save or share data along with a configured view in the Simulation Data Inspector, save
your data and settings in a Simulation Data Inspector session. You can save sessions as MAT- or
MLDATX-files. The default format is MLDATX. When you save a Simulation Data Inspector session,
the session file contains:

• All runs, data, and properties from the Inspect pane, including which run is the current run and
which runs are in the archive.

• Plot display selection for signals in the Inspect pane.
• Subplot layout and line style and color selections.

Note Comparison results and global tolerances are not saved in Simulation Data Inspector sessions.

To save a Simulation Data Inspector session:

1 Hover over the save icon on the left side bar. Then, click Save As.

2 Name the file.
3 Browse to the location where you want to save the session, and click Save.

For large datasets, a status overlay in the bottom right of the graphical viewing area displays
information about the progress of the save operation and allows you to cancel the save operation.

The Save tab of the Simulation Data Inspector preferences menu on the left side bar allows you to
configure options related to save operations for MLDATX-files. You can set a limit as low as 50MB on
the amount of memory used for the save operation. You can also select one of three Compression
options:

• None, the default, applies no compression during the save operation.
• Normal creates the smallest file size.

 Save and Share Simulation Data Inspector Data and Views

5-37

• Fastest creates a smaller file size than you would get by selecting None, but provides a faster
save time than Normal.

To load a Simulation Data Inspector session, click the open icon on the left side bar. Then,
browse to select the MLDATX-file you want to open, and click Open.

Alternatively, you can double-click the MLDATX-file. MATLAB and the Simulation Data Inspector open
if they are not already open.

When the Simulation Data Inspector already contains runs and you open a session, all of the runs in
the session move to the archive. The view updates to reflect show plotted signals from the session
file. You can drag runs between the work area and archive as desired.

When the Simulation Data Inspector does not contain runs and you open a session, the Simulation
Data Inspector puts runs in the work area and archive as specified in the file.

Share Simulation Data Inspector Views
When you have different sets of data that you want to visualize the same way, you can save a view. A
view saves the layout and appearance characteristics of the Simulation Data Inspector without saving
the data. Specifically, a view saves:

• Plot layout, axis ranges, linking characteristics, and normalized axes.
• Location of signals in the plots, including plotted signals in the archive.
• Signal grouping and columns on display in the Inspect pane.
• Signal color and line styling.

To save a view:

1
Click the layout button .

2 Click Save current view.
3 In the dialog box, specify a name for the view and browse to the location where you want to save

the MLDATX-file.
4 Click Save.

To load a view:

1
Click the layout button .

2 Click Open saved view.
3 Browse to the view you would like to load, and click Open.

Share Simulation Data Inspector Plots
Use the snapshot feature to share the plots you generate in the Simulation Data Inspector. You can
export your plots to the clipboard to paste into a document, as an image file, or to a MATLAB figure.

5 Simulation Data Inspector

5-38

You can choose to capture the entire plot area, including all subplots in the plot area, or to capture
only the selected subplot.

Click the camera icon on the toolbar to access the snapshot menu. Use the radio buttons to
select the area you want to share and how you want to share the plot. After you make your selections,
click Snapshot to export the plot.

If you create an image, select where you would like to save the image in the file browser.

You can create snapshots of your plots in the Simulation Data Inspector programmatically using
Simulink.sdi.snapshot.

Create a Simulation Data Inspector Report
To generate documentation of your results quickly, create a Simulation Data Inspector report. You can
create a report of your data in either the Inspect or the Compare pane. The report is an HTML file
that includes information about all the signals and plots in the active pane. The report includes all
signal information displayed in the signal table in the navigation pane. For more information about
configuring the table, see “Inspect Metadata” (Simulink).

To generate a Simulation Data Inspector Report:

1

Click the create report icon on the left side bar.
2 Under Include in report, specify the type of report you want to create.

 Save and Share Simulation Data Inspector Data and Views

5-39

• Select Inspect Signals to include the plots and signals from the Inspect pane.
• Select Compare Runs to include the data and plots from the Compare pane. When you

generate a Compare Runs report, you can choose to Report only mismatched signals or
to Report all signals. If you select Report only mismatched signals, the report shows only
signal comparisons that are not within the specified tolerances.

3 Specify a File name for the report, and navigate to the Folder where you want to save the
report.

4 Click Create Report.

The generated report automatically opens in your default browser.

Export Data to the Workspace or a File
You can use the Simulation Data Inspector to export data to the base workspace, a MAT file, or a
Microsoft Excel file. You can export a selection of runs and signals, runs in the work area, or all runs
in the Inspect pane, including the Archive.

When you export a selection of runs and signals, make the selection of data to export before clicking

the export button.

5 Simulation Data Inspector

5-40

Only the selected runs and signals are exported. In this example, only the x1 signals from Run 1 and
Run 2 are exported. The check box selections for plotting data do not affect whether a signal is
exported.

When you export a single signal to the workspace or a MAT file, the signal is exported to a
timeseries object. Data exported to the workspace or a MAT file for a run or multiple signals is
stored as a Simulink.SimulationData.Dataset object.

To export data to a file, select the File option in the Export dialog. You can specify a file name and
browse to the location where you want to save the exported file. When you export data to a MAT file,
a single exported signal is stored as a timeseries object, and runs or multiple signals are stored as
a Simulink.SimulationData.Dataset object. When you export data to a Microsoft Excel file, the
data is stored using the format described in “Microsoft Excel Import, Export, and Logging Format”
(Simulink).

To export to a Microsoft Excel file, select the XLSX extension from the drop-down. When you export
data to a Microsoft Excel file, you can specify additional options for the format of the data in the
exported file. If the file name you provided already exists, you can choose to overwrite the entire file
or to only overwrite sheets containing data that corresponds to the exported data. You can also
choose which metadata to include and whether signals with identical time data share a time column
in the exported file.

Export Video Signal to an MP4 File
You can export a 2D or 3D signal that contains RGB or monochrome video data to an MP4 file using
the Simulation Data Inspector. For example, when you log a video signal in a simulation, you can
export the data to an MP4 file and view the video using a video player. To export a video signal to an
MP4 file:

1 Select the signal you want to export.
2 Click Export in the toolbar on the left or right-click the signal and select Export.
3 In the Export dialog box, choose to export Selected runs and signals to a file.
4 Specify a file name and the path to the location where you want to save the file.
5 Select MP4 video file from the list and click Export.

 Save and Share Simulation Data Inspector Data and Views

5-41

For the option to export to an MP4 file to be available:

• You must export only one signal at a time.
• The selected signal must be 2D or 3D and contain RGB or monochrome video data.
• The selected signal must be represented in the Simulation Data Inspector as a single signal with

multidimensional sample values.

You may need to convert the signal representation before exporting the signal data. For more
information, see “Analyze Multidimensional Signal Data” (Simulink).

• The data type for the signal values must be double, single, or uint8.

Exporting a video signal to an MP4 file is not supported for Linux operating systems.

See Also

Related Examples
• “View Data in the Simulation Data Inspector” (Simulink)
• “Inspect Simulation Data” (Simulink)
• “Compare Simulation Data” (Simulink)

5 Simulation Data Inspector

5-42

Inspect and Compare Data Programmatically
You can harness the capabilities of the Simulation Data Inspector from the MATLAB command line
using the Simulation Data Inspector API.

The Simulation Data Inspector organizes data in runs and signals, assigning a unique numeric
identification to each run and signal. Some Simulation Data Inspector API functions use the run and
signal IDs to reference data, rather than accepting the run or signal itself as an input. To access the
run IDs in the workspace, you can use Simulink.sdi.getAllRunIDs or
Simulink.sdi.getRunIDByIndex. You can access signal IDs through a Simulink.sdi.Run
object using the getSignalIDByIndex method.

The Simulink.sdi.Run and Simulink.sdi.Signal classes provide access to your data and allow
you to view and modify run and signal metadata. You can modify the Simulation Data Inspector
preferences using functions like Simulink.sdi.setSubPlotLayout,
Simulink.sdi.setRunNamingRule, and Simulink.sdi.setMarkersOn. To restore the
Simulation Data Inspector's default settings, use Simulink.sdi.clearPreferences.

Create a Run and View the Data
This example shows how to create a run, add data to it, and then view the data in the Simulation Data
Inspector.

Create Data for the Run

Create timeseries objects to contain data for a sine signal and a cosine signal. Give each
timeseries object a descriptive name.

time = linspace(0,20,100);

sine_vals = sin(2*pi/5*time);
sine_ts = timeseries(sine_vals,time);
sine_ts.Name = 'Sine, T=5';

cos_vals = cos(2*pi/8*time);
cos_ts = timeseries(cos_vals,time);
cos_ts.Name = 'Cosine, T=8';

Create a Run and Add Data

Use the Simulink.sdi.view function to open the Simulation Data Inspector.

Simulink.sdi.view

To import data into the Simulation Data Inspector from the workspace, create a Simulink.sdi.Run
object using the Simulink.sdi.Run.create function. Add information about the run to its
metadata using the Name and Description properties of the Run object.

sinusoidsRun = Simulink.sdi.Run.create;
sinusoidsRun.Name = 'Sinusoids';
sinusoidsRun.Description = 'Sine and cosine signals with different frequencies';

Use the add function to add the data you created in the workspace to the empty run.

add(sinusoidsRun,'vars',sine_ts,cos_ts);

 Inspect and Compare Data Programmatically

5-43

Plot the Data in the Simulation Data Inspector

Use the getSignalByIndex function to access Simulink.sdi.Signal objects that contain the
signal data. You can use the Simulink.sdi.Signal object properties to specify the line style and
color for the signal and plot it in the Simulation Data Inspector. Specify the LineColor and
LineDashed properties for each signal.

sine_sig = getSignalByIndex(sinusoidsRun,1);
sine_sig.LineColor = [0 0 1];
sine_sig.LineDashed = '-.';

cos_sig = sinusoidsRun.getSignalByIndex(2);
cos_sig.LineColor = [0 1 0];
cos_sig.LineDashed = '--';

Use the Simulink.sdi.setSubPlotLayout function to configure a 2-by-1 subplot layout in the
Simulation Data Inspector plotting area. Then use the plotOnSubplot function to plot the sine
signal on the top subplot and the cosine signal on the lower subplot.

Simulink.sdi.setSubPlotLayout(2,1);

plotOnSubPlot(sine_sig,1,1,true);
plotOnSubPlot(cos_sig,2,1,true);

Close the Simulation Data Inspector and Save Your Data

When you have finished inspecting the plotted signal data, you can close the Simulation Data
Inspector and save the session to an MLDATX file.

Simulink.sdi.close('sinusoids.mldatx')

Compare Two Signals in the Same Run
You can use the Simulation Data Inspector programmatic interface to compare signals within a single
run. This example compares the input and output signals of an aircraft longitudinal controller.

First, load the session that contains the data.

Simulink.sdi.load('AircraftExample.mldatx');

Use the Simulink.sdi.Run.getLatest function to access the latest run in the data.

aircraftRun = Simulink.sdi.Run.getLatest;

Then, you can use the Simulink.sdi.getSignalsByName function to access the Stick signal,
which represents the input to the controller, and the alpha, rad signal that represents the output.

stick = getSignalsByName(aircraftRun,'Stick');
alpha = getSignalsByName(aircraftRun,'alpha, rad');

Before you compare the signals, you can specify a tolerance value to use for the comparison.
Comparisons use tolerance values specified for the baseline signal in the comparison, so set an
absolute tolerance value of 0.1 on the Stick signal.

stick.AbsTol = 0.1;

5 Simulation Data Inspector

5-44

Now, compare the signals using the Simulink.sdi.compareSignals function. The Stick signal is
the baseline, and the alpha, rad signal is the signal to compare against the baseline.

comparisonResults = Simulink.sdi.compareSignals(stick.ID,alpha.ID);
match = comparisonResults.Status

match =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The comparison result is out of tolerance. You can use the Simulink.sdi.view function to open the
Simulation Data Inspector to view and analyze the comparison results.

Compare Runs with Global Tolerance
You can specify global tolerance values to use when comparing two simulation runs. Global tolerance
values are applied to all signals within the run. This example shows how to specify global tolerance
values for a run comparison and how to analyze and save the comparison results.

First, load the session file that contains the data to compare. The session file contains data for four
simulations of an aircraft longitudinal controller. This example compares data from two runs that use
different input filter time constants.

Simulink.sdi.load('AircraftExample.mldatx');

To access the run data to compare, use the Simulink.sdi.getAllRunIDs (Simulink) function to
get the run IDs that correspond to the last two simulation runs.

runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end - 1);
runID2 = runIDs(end);

Use the Simulink.sdi.compareRuns (Simulink) function to compare the runs. Specify a global
relative tolerance value of 0.2 and a global time tolerance value of 0.5.

runResult = Simulink.sdi.compareRuns(runID1,runID2,'reltol',0.2,'timetol',0.5);

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see whether
signals were within the tolerance values or out of tolerance.

runResult.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 3
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

 Inspect and Compare Data Programmatically

5-45

All three signal comparison results fell within the specified global tolerance.

You can save the comparison results to an MLDATX file using the saveResult (Simulink) function.

saveResult(runResult,'InputFilterComparison');

Analyze Simulation Data Using Signal Tolerances
You can programmatically specify signal tolerance values to use in comparisons performed using the
Simulation Data Inspector. In this example, you compare data collected by simulating a model of an
aircraft longitudinal flight control system. Each simulation uses a different value for the input filter
time constant and logs the input and output signals. You analyze the effect of the time constant
change by comparing results using the Simulation Data Inspector and signal tolerances.

First, load the session file that contains the simulation data.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains four runs. In this example, you compare data from the first two runs in the
file. Access the Simulink.sdi.Run objects for the first two runs loaded from the file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Now, compare the two runs without specifying any tolerances.

noTolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);

Use the getResultByIndex function to access the comparison results for the q and alpha signals.

qResult = getResultByIndex(noTolDiffResult,1);
alphaResult = getResultByIndex(noTolDiffResult,2);

Check the Status of each signal result to see whether the comparison result fell within our out of
tolerance.

qResult.Status

ans =
 ComparisonSignalStatus enumeration

 OutOfTolerance

alphaResult.Status

ans =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The comparison used a value of 0 for all tolerances, so the OutOfTolerance result means the
signals are not identical.

You can further analyze the effect of the time constant by specifying tolerance values for the signals.
Specify the tolerances by setting the properties for the Simulink.sdi.Signal objects that

5 Simulation Data Inspector

5-46

correspond to the signals being compared. Comparisons use tolerances specified for the baseline
signals. This example specifies a time tolerance and an absolute tolerance.

To specify a tolerance, first access the Signal objects from the baseline run.

runTs1 = Simulink.sdi.getRun(runIDTs1);
qSig = getSignalsByName(runTs1,'q, rad/sec');
alphaSig = getSignalsByName(runTs1,'alpha, rad');

Specify an absolute tolerance of 0.1 and a time tolerance of 0.6 for the q signal using the AbsTol
and TimeTol properties.

qSig.AbsTol = 0.1;
qSig.TimeTol = 0.6;

Specify an absolute tolerance of 0.2 and a time tolerance of 0.8 for the alpha signal.

alphaSig.AbsTol = 0.2;
alphaSig.TimeTol = 0.8;

Compare the results again. Access the results from the comparison and check the Status property
for each signal.

tolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);
qResult2 = getResultByIndex(tolDiffResult,1);
alphaResult2 = getResultByIndex(tolDiffResult,2);

qResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

alphaResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

See Also
Simulation Data Inspector

Related Examples
• “Compare Simulation Data” (Simulink)
• “How the Simulation Data Inspector Compares Data” (Simulink)
• “Create Plots Using the Simulation Data Inspector” (Simulink)

 Inspect and Compare Data Programmatically

5-47

Limit the Size of Logged Data
In this section...
“Limit the Number of Runs Retained in the Simulation Data Inspector Archive” on page 5-48
“Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data” on page 5-48
“View Data Only During Simulation” on page 5-49
“Reduce the Number of Data Points Logged from Simulation” on page 5-49

Logging simulation data can produce large amounts of data that fill up disk space. Such situations
include logging many signals, logging data for long simulations, and running many simulations
without deleting run data from the Simulation Data Inspector. You can choose among several options
to limit the size of logged simulation data. You can:

• Limit the number of runs retained in the Simulation Data Inspector archive.
• Reduce the number of data points logged in each simulation.
• Specify a minimum disk space requirement or maximum size for logged data.
• Configure logging for only viewing data during simulation.

Depending on your requirements, you can use more than one strategy to limit the size of logged data.

Limit the Number of Runs Retained in the Simulation Data Inspector
Archive
When you run multiple simulations in a single MATLAB session, logged simulation data accumulates
in the Simulation Data Inspector even if you overwrite the logging data in the MATLAB workspace. To
reduce the amount of data the Simulation Data Inspector retains, you can configure a limit for the
number of runs stored in the archive. When the number of runs in the archive reaches the size limit,
the Simulation Data Inspector starts to delete runs from the archive on a first-in, first-out basis.

Configure the archive Size setting in the Simulation Data Inspector preferences. The size limit only
applies to runs in the archive. For the Simulation Data Inspector to automatically limit data retention,
select Automatically archive and specify the maximum number of runs to retain in the archive. By
default, Automatically archive is enabled with an archive size limit of twenty runs. If you
experience issues with logged data consuming too much disk space, consider adjusting the size limit
for the archive in the Simulation Data Inspector preferences.

Specify a Minimum Disk Space Requirement or Maximum Size for
Logged Data
You can use preferences in the Simulation Data Inspector to directly limit the size of logged data by
specifying a minimum amount of disk space to leave free or by specifying a maximum size for logged
data on disk. Each setting accounts for all kinds of logged data. By default, logged data must leave at
least 100 MB of free disk space with no maximum size limit. Specify the required disk space and
maximum size in GB, and specify 0 to apply no disk space requirement or no maximum size limit.

When you specify a minimum disk space requirement or a maximum size for logged data, you can
also specify whether to prioritize retaining data from the current simulation or data from prior
simulations when approaching the limit. By default, the Simulation Data Inspector prioritizes

5 Simulation Data Inspector

5-48

retaining data for the current run. As the free disk space or logged data size approaches the limit,
prior runs are deleted first to free up space for data being logged in the current run. If deleting runs
does not free up enough space, recording is disabled. To prioritize retaining prior data, change the
When low on disk space setting to Keep prior runs and stop recording. You see a warning
message when prior runs are deleted and when recording is disabled. If recording is disabled due to
the size of logged data, you need to change the Record Mode back to View and record data to
continue logging data, after you have freed up disk space.

View Data Only During Simulation
In some situations, you may want to only view the data for logged signals and not save the values. For
example, when using the Simulation Data Inspector to visualize data streaming from hardware, you
may only want to view the data live and not record it. You can change the Record mode in the
Simulation Data Inspector preferences to View during simulation only so that logged data is not
saved and you can still view the data during simulation. The Record mode is reset to View and
record data at the start of each MATLAB session.

When you change the Record mode to View during simulation only:

• Logged data is not available in the Simulation Data Inspector or workspace after simulation.
• You can view data using dashboard blocks, scopes, and the Simulation Data Inspector, but plots

clear when you pan or zoom.
• You cannot access logged data during simulation using the Simulation Data Inspector

programmatic interface.

Reduce the Number of Data Points Logged from Simulation
Model configuration parameters and signal properties allow you to limit the number of data points
logged in a simulation. Be sure to carefully consider data requirements when limiting logged data
points. Limiting data can skip critical time points, and can lead to aliasing, if your effective sample
rate is too low.

You can reduce the number of data points using:

• Decimation — Log every nth signal value.
• Limit data points to last — Only log the last n signal values.
• Logging intervals — Specify specific time intervals in which to log data.

For details, see “Specify Signal Values to Log” (Simulink).

See Also
Tools
Simulation Data Inspector

Related Examples
• “Specify Signal Values to Log” (Simulink)
• “Configure the Simulation Data Inspector” (Simulink)

 Limit the Size of Logged Data

5-49

	Streaming Pixel Interface
	Streaming Pixel Interface
	What Is a Streaming Pixel Interface?
	How Does a Streaming Pixel Interface Work?
	Why Use a Streaming Pixel Interface?
	Pixel Stream Conversion Using Blocks and System Objects
	Timing Diagram of Single Pixel Serial Interface
	Timing Diagram of Multipixel Serial Interface

	Filter Multipixel Video Streams
	MultiPixel-MultiComponent Video Streaming
	Pixel Control Bus
	Pixel Control Structure
	Convert Camera Control Signals to pixelcontrol Format
	Integrate Vision HDL Blocks into Camera Link System

	HDL-Optimized Algorithm Design
	Configure Blanking Intervals
	Troubleshoot Blanking Interval Problems

	Edge Padding
	Increase Throughput with Padding None
	Gamma Correction
	Histogram Equalization
	Edge Detection and Image Overlay
	Edge Detection and Image Overlay with Impaired Frame
	Noise Removal and Image Sharpening
	Multi-Zone Metering
	Harris Corner Detection
	FAST Corner Detection
	Lane Detection
	Generate Cartoon Images Using Bilateral Filtering
	Pothole Detection
	Buffer Bursty Data Using Pixel Stream FIFO Block
	Using the Line Buffer to Create Efficient Separable Filters
	Image Pyramid
	Stereo Disparity Using Semi-Global Block Matching
	Stereo Image Rectification
	Image Undistortion
	Image Warp
	Low Light Enhancement
	Contrast Limited Adaptive Histogram Equalization
	Image Resize
	Fog Rectification
	Blob Analysis
	Pixel-Streaming Design in MATLAB
	Enhanced Edge Detection from Noisy Color Video

	Code Generation and Deployment
	Accelerate a MATLAB Design with MATLAB Coder
	HDL Code Generation from Vision HDL Toolbox
	What Is HDL Code Generation?
	HDL Code Generation Support in Vision HDL Toolbox
	Streaming Pixel Interface in HDL

	Blocks and System Objects Supporting HDL Code Generation
	Blocks
	System Objects

	Generate HDL Code from Simulink
	Introduction
	Prepare Model
	Generate HDL Code
	Generate HDL Test Bench

	Generate HDL Code from MATLAB
	Create an HDL Coder Project
	Generate HDL Code

	Modeling External Memory
	Frame Buffer
	Random Access

	Deploy and Verify YOLO v2 Vehicle Detector on FPGA
	Vertical Video Flipping Using External Memory
	Rotate Image by Small Acute Angle
	Image Normalization Using External Memory
	Contrast Limited Adaptive Histogram Equalization with External Memory
	HDL Cosimulation
	FPGA-in-the-Loop
	FPGA-in-the-Loop Simulation with Vision HDL Toolbox Blocks
	FPGA-in-the-Loop Simulation with Multipixel Streaming
	FPGA-in-the-Loop Simulation with Vision HDL Toolbox System Objects

	Prototype Vision Algorithms on Zynq-Based Hardware
	Video Capture
	Reference Design
	Deployment and Generated Models

	Block Reference Examples
	Select Region of Interest
	Select Regions for Vertical Reuse
	Construct a Filter Using Line Buffer
	Convert RGB Image to YCbCr 4:2:2 Color Space
	Compute Negative Image
	Adapt Image Filter Coefficients from Frame to Frame
	Video Stabilization

	Simulation Data Inspector
	View Data in the Simulation Data Inspector
	View Logged Data
	Import Data from the Workspace or a File
	View Complex Data
	View String Data
	View Frame-Based Data
	View Event-Based Data

	Import Data from a CSV File into the Simulation Data Inspector
	Basic File Format
	Multiple Time Vectors
	Signal Metadata
	Import Data from a CSV File

	Microsoft Excel Import, Export, and Logging Format
	Basic File Format
	Multiple Time Vectors
	Signal Metadata
	User-Defined Data Types
	Complex, Multidimensional, and Bus Signals
	Function-Call Signals
	Simulation Parameters
	Multiple Runs

	Configure the Simulation Data Inspector
	Logged Data Size and Location
	Archive Behavior and Run Limit
	Incoming Run Names and Location
	Signal Metadata to Display
	Signal Selection on the Inspect Pane
	How Signals Are Aligned for Comparison
	Colors Used to Display Comparison Results
	Signal Grouping
	Data to Stream from Parallel Simulations
	Options for Saving and Loading Session Files
	Signal Display Units

	How the Simulation Data Inspector Compares Data
	Signal Alignment
	Synchronization
	Interpolation
	Tolerance Specification
	Limitations

	Save and Share Simulation Data Inspector Data and Views
	Save and Load Simulation Data Inspector Sessions
	Share Simulation Data Inspector Views
	Share Simulation Data Inspector Plots
	Create a Simulation Data Inspector Report
	Export Data to the Workspace or a File
	Export Video Signal to an MP4 File

	Inspect and Compare Data Programmatically
	Create a Run and View the Data
	Compare Two Signals in the Same Run
	Compare Runs with Global Tolerance
	Analyze Simulation Data Using Signal Tolerances

	Limit the Size of Logged Data
	Limit the Number of Runs Retained in the Simulation Data Inspector Archive
	Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data
	View Data Only During Simulation
	Reduce the Number of Data Points Logged from Simulation

